
oVirt kick-off workshop

01 Nov 2011

Michael Pasternak

Introduction to oVirt
RESTful API
SDK and CLI

oVirt kick-off workshop

HTTP Background

The Hypertext Transfer Protocol (HTTP) is a networking
protocol for distributed, collaborative, hypermedia information
systems. HTTP is the foundation of data communication for the
World Wide Web.

● HTTP is an Application Layer protocol

(The protocol definitions presume a reliable Transport Layer)

● client-server computing model

● HTTP Resources are identified and located on the network by
Uniform Resource Identifiers

● HTTP functions as a request-response

oVirt kick-off workshop

HTTP methods

● GET

Requests a representation of the specified resource. Requests
using GET (and a few other HTTP methods) "SHOULD NOT
have the significance of taking an action other than retrieval".

● HEAD

Asks for the response identical to the one that would correspond
to a GET request, but without the response body. This is useful
for retrieving meta-information written in response headers,
without having to transport the entire content.

oVirt kick-off workshop

HTTP methods con.

● POST

Submits data to be processed to the identified resource. The
data is included in the body of the request.

● PUT

Uploads a representation of the specified resource.

● DELETE

Deletes the specified resource.

● TRACE

Echoes back the received request, so that a client can see what
(if any) changes or additions have been made by intermediate
servers.

oVirt kick-off workshop

HTTP methods con.

● OPTIONS

Returns the HTTP methods that the server supports for
specified URL. This can be used to check the functionality of a
web server by requesting '*' instead of a specific resource.

● CONNECT

Converts the request connection to a transparent TCP/IP tunnel,
usually to facilitate SSL-encrypted communication (HTTPS)
through an unencrypted HTTP proxy.

● PATCH

Is used to apply partial modifications to a resource.

oVirt kick-off workshop

HTTP response codes

● 1xx Informational

- 102 Processing

...

● 2xx Success

- 200 OK

- 201 Created

- 202 Accepted

...

● 3xx Redirection

...

● 4xx Client Error

- 400 Bad Request

- 401 Unauthorized

- 404 Not Found

...

● 5xx Server Error

- 500 Internal Server Error

- 503 Service Unavailable

...

oVirt kick-off workshop

REST Background

● REST is Representational State Transfer

● The term Representational State Transfer was
introduced and defined in 2000 by Roy Fielding in his
doctoral dissertation

(Fielding is one of the principal authors of the
Hypertext Transfer Protocol (HTTP) specification
versions 1.0 and 1.1)

oVirt kick-off workshop

REST Concepts

● Client–server

● Stateless

● Cacheable

● Uniform interface

oVirt kick-off workshop

REST Concepts

● Identification of resources

● Manipulation of resources through representations

● Self-descriptive

● Hypermedia as the engine of application state

Clients make state transitions only through actions, a client
does not assume that any particular actions will be
available for any particular resources beyond those
described in representations previously received from the
server.

oVirt kick-off workshop

Media types
● XML

<vms>
 <vm id=”xxx”>
 <name>yyy<name>
 </vm>
</vms>

● JavaScript Object Notation (JSON)

{
 “vms” : [
 “vm” : {
 “id” : ”xxx”,
 “name” : ”yyy” }]
}

● YAML

- vms:
 - id: “xxx”
 name: yyyy

oVirt kick-off workshop

SOAP vs. REST

● REST advantages:

- Lightweight - not a lot of extra xml markup

- Human Readable Results

- Easy to build - no toolkits required

● SOAP advantages:

- Easy to consume (sometimes)

- Rigid - type checking, adheres to a contract

- Development tools

oVirt kick-off workshop

SOAP vs. REST

oVirt kick-off workshop

oVirt-API as a RESTful API

● Container: JBOSS 5.1

● Framework: RESTeasy 2.2.2GA

● http(s)://server:port/api/

oVirt kick-off workshop

oVirt-API URI structure

http(s)://server:port/api/aaa/xxx-xxx/bbbb/yyy-yyy

 1 2 3 4 5 6 7

1. protocol

2. server details
3. entry point (base resource)

4. collection
5. resource

6. sub-collection
7. sub-resource

oVirt kick-off workshop

oVirt-API How-to (the methods)

● To list all collection resources, use GET.
GET http(s)://server:port/api/vms

● To retrieve specific resource, use GET.
GET http(s)://server:port/api/vms/xxx

● To create a resource, use POST.
POST http(s)://server:port/api/vms

<vm>...</vm>

● To update the resource, use PUT.
PUT http(s)://server:port/api/vms/xxx

<vm><name>aaa</name></vm>

● To remove the resource, use DELETE.
DELETE http(s)://server:port/api/vms/xxx

oVirt kick-off workshop

oVirt-API methods (behind the scene)

oVirt kick-off workshop

oVirt-API How-to (headers)

● Method::Any

- Accept: application/xml, yaml, json (mandatory) *

- Authorization: Basic ... (mandatory)

- Accept-Language: de | nl | it

● Method::GET

- details = statistics | disks | nics | tags ...

● Method::POST

- Expect: 201-created

oVirt kick-off workshop

oVirt-API resource structure

GET http(s)://server:port/api/vms/xxx

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vm id="xxx" href="/api/vms/xxx"> identification details
 <name>vm1_iscsi</name>
 <status>DOWN</status>
 <memory>10737418240</memory>
 <cpu>
 <topology cores="1" sockets="1"/>
 </cpu>
 <start_time>2011-07-13T12:05:34.931Z</start_time>
 <creation_time>2011-05-31T16:47:51+03:00</creation_time>
 <actions>
 <link rel="start" href="/api/vms/xxx/start"/>
 <link rel="stop" href="/api/vms/xxx/stop"/>
 </actions>
 <link rel="disks" href="/api/vms/xxx/disks"/>
 <link rel="nics" href="/api/vms/xxx/nics"/>
 <cluster id="zzz" href="/api/clusters/zzz"/>
 <template id="yyy" href="/api/templates/yyy"/>
</vm>

Metadata

Resource
details

Actions

Links to related
resources

oVirt kick-off workshop

Clients / Tools

● Any HTTP library/client can be used as a

a client for RHEVM-API

● Common used clients are:

- FF REST Client

- REST-Client (Google)

- Linux: curl / wget

...

oVirt kick-off workshop

FF REST Client

oVirt kick-off workshop

REST-Client (Google)

oVirt kick-off workshop

Examples
● GET http(s)://server:port/api

oVirt kick-off workshop

Example GET

Get:

GET http(s)://server:port/api/vms/xxx

Get with 'curl':

curl -v -u "user@domain:password" -H "Content-type: application/xml" -X
GET http(s)://server:port/api/vms/xxx

oVirt kick-off workshop

Example CREATE
● Create VM:

POST http(s)://server:port/api/vms
<vm>
 <name>my_new_vm</name>
 <cluster id="xxx" />
 <template id="yyy" />
</vm>

● Create with 'curl'

curl -v -u "user@domain:password"
 -H "Content-type: application/xml"
 -d '<vm>
 <name>my_new_vm</name>
 <cluster><name>cluster_name</name></cluster>
 <template><name>template_name</name></template>
 </vm>'
 'http(s)://server:port/api/vms'

oVirt kick-off workshop

Example UPDATE

● Update:

PUT http(s)://server:port/api/vms/xxx
<vm>
 <name>new_name</name>
</vm>

● Update with 'curl':

echo "<vm><name>new_name</name></vm>" > /tmp/upload.xml
curl -v -u "user@domain:password"
 -H "Content-type: application/xml"
 -T /tmp/upload.xml
 'http(s)://server:port/api/vms/xxx'

oVirt kick-off workshop

Example DELETE

● Delete:

DELETE http(s)://server:port/api/vms/xxx

● Delete with 'curl':

curl -v -u "user@domain:password" -X DELETE
http(s)://server:port/api/vms/xxx

oVirt kick-off workshop

Python SDK: (The concepts):

● Complete protocol abstraction.

● Full compliance with the oVirt api architecture.

● Auto-completion.

● Self descriptive.

● Intuitive and easy to use.

● Auto-Generated.

oVirt kick-off workshop

RSDL:
(The RESTful Services Description Language)

● Why?

- No way to know how to create the resource [1].

- No way to know which actions available on collection [1].

- No way to know which parameters to pass [1]:

 - mandatory/optional/read-only.

 - type.

 - overloads.

- If resource is yet not created:

 - No way to know which actions available on it [1].

 - No way to know which sub-collections available [1].

 - No way to know how the resource representation

 looks like [1].

[1] other than reading documentation.

oVirt kick-off workshop

RSDL:
(RESTful Services Description Language)
● How?

GET: http(s)://server:port/api?rsdl

oVirt kick-off workshop

oVirt kick-off workshop

Python SDK: (Usage)

- Creating the proxy

- Listing all collections

- Listing collection's methods.

- Querying collection with oVirt search
 engine.

- Querying collection by custom constraint.

- Querying collection for specific resource.

- Accessing resource methods and
 properties.

oVirt kick-off workshop

Python SDK: (Usage)

- Accessing resource properties and
 sub-collections.

- Accessing sub-collection methods.

- Retrieving sub-collection resource.

- Accessing sub-collection resource
 properties and methods.

- Querying sub-collection by custom
 constraint.

oVirt kick-off workshop

CLI:

oVirt kick-off workshop

CLI – querying for resources

oVirt kick-off workshop

CLI – create

Create using resource arguments

Create using resource XML
representation

Parameters incompleteness
failure

BE failure

ovirt

oVirt kick-off workshop

CLI – update

oVirt kick-off workshop

CLI – delete

oVirt kick-off workshop

CLI - action

oVirt kick-off workshop

What next?

● Non-Admin users support

● Actions on Collection (atomic network operations)

● Pagination on collections

● Async update/delete

● Exposing additional oVirt search capabilities

● SDKs (C# / Ruby / Delphi / Java / ...)

● Clients (PowerShell / ...)

oVirt kick-off workshop

New oVirt engine features

- Quota

- New networking capabilities (bridgeless)

- Multiple storage domains

- Backup API

- Full support for Async tasks

...

oVirt kick-off workshop

THANK YOU !

Wiki: http://ovirt.org/wiki/Category:Api
ML : engine-devel
GIT : git://gerrit.ovirt.org/ovirt-engine-sdk

http://ovirt.org/wiki/Category:Api

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

