Nested Virtualization

Dongxiao Xu, Xiantao Zhang, Yang Zhang

May 9, 2013

QKB o TEeT R R L e ess | | DN PSR INUX KE

INTEL LINUX GRAPHICS SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY IN

Agenda

 Nested Virtualization Overview

 Dive into Nested Virtualization Details
Nested CPU Virtualization
Nested MMU Virtualization

Nested I/O Virtualization

« Optimization with Intel HW Feature

Nested CPU Virtualization: VMCS shadowing
Nested MMU Virtualization: Virtual EPT

Nested I/O Virtualization: Virtual VT-d

Nested Virtualization
Overview

What is Nested Virtualization

Concept
* Running virtual machines inside virtual machine (}[h N\
L : . L2 Guest L2 Guest
Objectives of Nested Virtualization L)
p - | L1 Guest
* Unmodified Hypervisor/Guest .
L1 Hypervisor
« Isolation and security N Y)
« Efficiency in performance I LO Hypervisor)

Approaches

« Software Solutions (Para-Virtualization, BT, etc.) _

. Hardware Solution: Nested VMX

Nested Virtualization -- A key feature towards cloud computing

« Virtualization in daily life
Windows 7 compatibility mode
Windows 8 with Hyper-V
Linux with KVM

* Run virtualization apps/solutions by cloud user
Solution 1: Allocate a physical machine with virtualization capability

Solution 2: Nested Virtualization capable VMMs

Nested Virtualization - other usage models

Hypervisor level of Anti-Virus

Facility for investigating VMM behavior

New HW feature emulation

Vurtnalization Dive into Nested
‘ Virtualization Detalls

ey el

CPU Virtualization

. . . IP: Running
» Guest vcpu is running privileged Instructions
instruction vcpu ™
* Guest traps into VMM by VM exit
« VMM emulates the instruction on lz;';':fcf;i
behalf of guest Guestlevel GGG BN BN B N S
« VMM updates guest EIP and goes
back to guest Trap and fall Push back
VMExit VMEntry

« Guest vcpu continues running

vmm@:m?@

VMM level

CPU Virtualization

VMEXIT — —
VMEntry s

VMX key concepts

Guest tries to do
privileged
operations

(e.g. mov crid)

« New running modes: root and non-root modes.

« The info bag: VMCS (4k page)

Saving guest running status
. guest
Control when guest exists f_ \
; " 4

Information exchange VMM r —\
« Guest > VMM: VM Exit

Guest traps into VMM context //

VMM helps to emulate the instruction controls // VMCS
« VMM - Guest: VM Entry

VMLAUNCH or VMRESUME “Hsri“tl.il:gtii:g(nthe

Returning from VMM back to guest

Nested CPU Virtualization

Nested virtualization guidelines: m

LO emulates virtual VMCS ¥ N e)

(vmcs12), virtual VM exit and virtual L[2 GueTt L{Z Gue?t
._|vmcs12| i |vmesi2]
VM entry for L1 VMM so that L1 h L2 Guest | L2 Guest L1 Guest
regards L2 as its guest.
_ _ L1 Hypervisor

« LO provides the actual runtime L _ [vmeso2])\ [vmeso2])\ Y,
environment for L2 guest directly by e >
constructing vmcs02 and load it LO Hypervisor
into hardware. C J

Nested CPU Virtualization

Guest vcpu encounters a privileged
Instruction when running

Guest traps into LO VMM by VM exit

LO VMM checks the status, prepare
the virtual VMCS, and inject the VM
entry into L1 VMM

L1 VMM emulates this instruction

When finished, L1 VMM call
VMRESUME trying back to guest

LO VMM get the VM exit (due to
VMRESUME executed in non-root
mode), and issue real VMRESUME

Guest continues to run instructions

IP: Running
instructions

vcpu >

Privileged ﬁ
instruction

Guest leve|

Wirtual Virtual i
WM Exit VYMENtry

Wirtual|
VMCS

Push to L1 Trap from L
VMEntry VMExit

Push back
VMEntry

Trap and fall
VMExit

L1 VMM level

Nested CPU Virtualization

Virtual VMEXxit

* Nested VMX key concepts ... >
* Virtualize VMCS Virtual VMEntry
Shadow VMCS and virtual VMCS """ >

* Virtualize VMEXit
Guest trap into LO VMM

LO inject to L1 VMM L1
* Virtualize VMEntry
L1 VMM trap into LO VMM Lo

LO VMM return back to L2 guest

|] vmcs

MMU Virtualization

What memory virtualization
needs to do?

Present guest OS memory resource
it expects

Isolate memory among guests/HV
from guests

Share memory resources whenever
possible

VM1

VM3 VM4

Guest

Pseudo
Physical
Memory

Machine
Physical
Memory

MMU Virtualization

Software solution: Shadow Page Tables

« Ultilize the original CPU paging mechanism (CR3).

« Guest OS maintains gva to gpa mappings.

* Hypervisor maintains gpa to hpa mappings.

* Hypervisor establishes shadow page tables (gva = hpa).

Pros: .--L_.'>[_: :--L_r>[_:

« Support unmodified guests. GVA —3> GPA —> HPA
No specific hardware required. W
Cons

« Performance issue (trap guest PT operations, etc).
« Complex software implementation.

MMU Virtualization

Hardware solution: Extended Page Tables (EPT)

« Bring in another paging dimension in hardware.

* Guest OS maintains gva to gpa mappings, loaded in CR3.

* Hypervisor maintains gpa to hpa mappings, loaded in EPTP.

Pros: CR3 EPTP
« Guest owns CR3 page table. Df[l Dj[l
- Performance is highlight. GVA =——>» GPA =—> HPA

« Simplified software.

Nested MMU Virtualization

Challenges

« Three dimensions of paging
L2 gva - L2 gpa
L2 gpa = L1 gpa

L1 gpa = LO hpa _ _ Shadow Shadow EPT
« CPU only provides two dimension L U J 1| Q J
paging with EPT (| € e)
Shadow EPT EPT
. x"\\ ~ ~ / - o
Nested MMU virtualization combinations

Legacy Solutions

« shadow on shadow

 shadow on EPT

« EPTonEPT

« EPT on shadow (No valuable significance)

Nested MMU Virtualization

Shadow on Shadow

« Use one dimension page table to emulate three.

» No specific hardware requirement, can use in old platforms.
« Performance is not good.

SPT02, CR3

Nested MMU Virtualization

Shadow on EPT

« Use two dimension page tables to emulate three.
 Need EPT involvement.

« L2 page faults will trigger a lot of emulation effort.

SPT12, CR3

/O Virtualization

« Software communicate with device
Port 1/O
MMIO

* Device transfer data to and from

system memory

DMA access

« Events notification from device
Interrupt

« Device discovery and configuration
Configuration space access in PCI device

Processor

Interrupt

I/0

DMA

System |€&—
Memory

Device

/O Virtualization

Software solution: Device emulation pfs
¢ Maintain same SW interface (I/O, MMIO, INTR, DMA) Device)
« Use arbitrary media to emulate virtualized device Model Nave
Pros
« Transparent to VM software stack RO Emu '/:O N
* Agnostic to physical device in the platform. Thus ' 4 1
Legacy SW can still run, even after HW upgrade i ' ! !
Smooth V.M migratic?n across d.ifferent platforms : : VM Exit : :
« Good physical device sharing | eeoeeeees
Cons I;'river Virtual Interrupt
* Un-optimum performance Hypervisor
« Cannot enjoy latest & greatest HW
Lack of modern device emulation, since too complex .]
- Device
* Poor scalability
Hardware

* |solation and stability depends on implementation

/O Virtualization

. . . ADDS
Software solution: Para-virtualized 1/0 ppf
* VMM presents a specialized virtual device to VM Backend)
* Anew & efficient interface between VMM & VM driver Driver Erontend
Usually high-level abstraction Share Memory Driver
Requires a specialized driver in VM
I A
Pros S .
1
« Better performance i i ! i
. . . . 1
* Agnostic to physical device in the platform : ! Hypercalls oy
Legacy SW can still run, even after HW upgrade L e e T T LT - :
Smooth VM migration across different platforms y TTTTTTTmT ST T
. . . . Notifications
« Good physical device sharing Driver UMM
Cons
* Need install specialized driver in VM y

Device

« High CPU utilization (I/O interface and memory copy)

* Not so good scalability because of CPU utilization Hardware

/O Virtualization

Hardware solution: VT-d Apps
* Assign a physical device to a VM directly 7

* VM access the device directly, w/ VMM intervention H
reduced to minimum Native

« Physical device access guest’s memory directly with Driver

/0 IRQ
help of Intel's VT-d technology
Pros
Near-to-native performance
Minimum VMM intervention, thus low CPU utilization VMM
Good isolation
Cons Device
Exclusive device access
Hardware

PCI slots in system is limited (SR-10OV)

Nested I/O Virtualization

* Nested I/O Virtualization Combinations:
L2 software emulation + L1 software emulation
L2 software emulation + L1 PV
L2 software emulation + L1 VT-d
L2 PV + L1 software emulation
L2 PV + L1 PV
L2 PV + L1 VT-d

« Mixed Pros and Cons
But, still need software intercepit.

Optimizations with
Intel HW Feature

Nested CPU Optimization: Reduce VM Exits

IP: Running
. i [
« L1VMM operates VMCS in e

non-root mode 5};? Privileged ﬂ
instruction

emulate the non-root Trap and fall — ull':"ltll'-":;'r Virtual Push back

- VIMExit o VMERtry VMERTry
VMREAD/VMWRITE . 5@ ﬂ
L1 VMM level | N N | —

* For asingle virtual VM exit, L1
will trigger ~20
VMREAD/VMWRITE.

Push o L1
VMERtry

VMCS @
LO VMM level

Goal: Reduce heavy VM exits due to non-root VMREAD/VMWRITE

Nested CPU Optimization: Ideal Case

IP: Running
instructions

>
Privileged
instruction
Guest level Il Il BN BN BN B BN B B
Trapandfall | ..~ Virtual Virtual =" [Push back
VMExit - YMExit VMEntry " VMEntry
WVirtual Virtua
VMECS VIS
L1 VMM level

VMREAD...

Pushto L1 VMWRITE... Trap from L

VMERNtry

YIICS VMCS

LO VMM level

Nested CPU Optimization: VMCS Shadowing

* Hardware assisted non-root VMREAD/VMWRITE
+ Shadow VMCS is linked to L1’s VMCS by VMCS Link Pointer
* No VMEXxit happened for non-root VMREAD/VMWRITE

[]
—

Nested MMU Optimization

EPT on EPT

« Use two dimension page tables to emulate three.
 Need EPT involvement.

« L2 fully owns its page tables.

« Best performance among the three solutions.

L2 GVA

EPTO2, EPTP

Virtual EPT Architecture

< —
L2 Guest VM entry/exit

"~ €= ————— >
! Virtual VM entry/exit

v | EPTI2 ==

L1 VMM vmes 2}%.“:__.'}!__:

? ! L2GPA > L1 GPA

= 95 A

g g

21 2

= 2!
! 1

'L EPTO2 J EPTO1
LO VMM w vmes01

L2 GPA > LOHPA L1 GPA > LOHPA

Virtual EPT Performance

m L2 w/o optimization
= L2 w/VvEPT
mLl

Nested I/O Optimization:

« 1/O performance for L2 guest is very slow
« Due to extremely long device emulation path through all the way to L1 & LO VMMs

* How to fix that?
* Present virtual VT-d engine to L1 VMM
« Device can be directly assigned to L2 guest

High I/O performance, because of minimum VMM intervention.

* Must-to-have features in Virtual VT-d
« DMA Remapping & Queue Invalidation: Exposed
« Interrupt remapping: Not Exposed

Virtual VT-d Architecture

Device

Guest view of VT-d

&1 VMM

'.
o
o]
o
n

DevP,Funn

ERRLELE LR LR L S

SN I NSNS NSNS NSNS NSNS EEEEEEEREEEE

a

Virtual VT-d

vQl

Dev M FunN

Shadow VT-d page table

Performance Evaluation of virtual VT-d

1100 Wi u Wi
1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100

O |

Mb/s

TCP Send TCP Receive UDP Send UDP Receive

Iperf testing with the assigned NIC to nested Guest

[Bandwidth is good enough!]

Thank You!
Q&A?

