

Nested Virtualization

Dongxiao Xu, Xiantao Zhang, Yang Zhang

May 9, 2013

2

Agenda

• Nested Virtualization Overview

• Dive into Nested Virtualization Details

• Nested CPU Virtualization

• Nested MMU Virtualization

• Nested I/O Virtualization

• Optimization with Intel HW Feature

• Nested CPU Virtualization: VMCS shadowing

• Nested MMU Virtualization: Virtual EPT

• Nested I/O Virtualization: Virtual VT-d

Nested Virtualization

Overview

3

4

What is Nested Virtualization

Concept

• Running virtual machines inside virtual machine

Objectives of Nested Virtualization

• Unmodified Hypervisor/Guest

• Isolation and security

• Efficiency in performance

Approaches

• Software Solutions (Para-Virtualization, BT, etc.)

• Hardware Solution: Nested VMX

Hardware

L0 Hypervisor

L1 Hypervisor

L2 Guest L2 Guest

L1 Guest

5

Nested Virtualization -- A key feature towards cloud computing

• Virtualization in daily life

– Windows 7 compatibility mode

– Windows 8 with Hyper-V

– Linux with KVM

• Run virtualization apps/solutions by cloud user

– Solution 1: Allocate a physical machine with virtualization capability

– Solution 2: Nested Virtualization capable VMMs

6

Nested Virtualization – Other usage models

• Hypervisor level of Anti-Virus

• Facility for investigating VMM behavior

• New HW feature emulation

• …

Dive into Nested

Virtualization Details

7

8

CPU Virtualization

vcpu

• Guest vcpu is running privileged

instruction

• Guest traps into VMM by VM exit

• VMM emulates the instruction on

behalf of guest

• VMM updates guest EIP and goes

back to guest

• Guest vcpu continues running

9

CPU Virtualization

VMX key concepts

• New running modes: root and non-root modes.

• The info bag: VMCS (4k page)

– Saving guest running status

– Control when guest exists

– Information exchange

• Guest  VMM: VM Exit

– Guest traps into VMM context

– VMM helps to emulate the instruction

• VMM  Guest: VM Entry

– VMLAUNCH or VMRESUME

– Returning from VMM back to guest

10

Nested CPU Virtualization

Nested virtualization guidelines:

• L0 emulates virtual VMCS

(vmcs12), virtual VM exit and virtual

VM entry for L1 VMM so that L1

regards L2 as its guest.

• L0 provides the actual runtime

environment for L2 guest directly by

constructing vmcs02 and load it

into hardware.

Hardware

L0 Hypervisor

L1 Hypervisor

L2 Guest L1 Guest

L2 Guest

L2 Guest

L2 Guest
vmcs12 vmcs12

vmcs02 vmcs02

11

Nested CPU Virtualization

• Guest vcpu encounters a privileged

instruction when running

• Guest traps into L0 VMM by VM exit

• L0 VMM checks the status, prepare

the virtual VMCS, and inject the VM

entry into L1 VMM

• L1 VMM emulates this instruction

• When finished, L1 VMM call

VMRESUME trying back to guest

• L0 VMM get the VM exit (due to

VMRESUME executed in non-root

mode), and issue real VMRESUME

• Guest continues to run instructions

vcpu

12

Nested CPU Virtualization

• Nested VMX key concepts

• Virtualize VMCS

• Shadow VMCS and virtual VMCS

• Virtualize VMExit

• Guest trap into L0 VMM

• L0 inject to L1 VMM

• Virtualize VMEntry

• L1 VMM trap into L0 VMM

• L0 VMM return back to L2 guest

13

MMU Virtualization

What memory virtualization

needs to do?
• Present guest OS memory resource

it expects

• Isolate memory among guests/HV

from guests

• Share memory resources whenever

possible

 Machine

Physical

Memory

Hypervisor

Guest

Pseudo

Physical

Memory

4

0

2

1

3

2

1

0

3

4

VM1 VM4 VM3 VM2

14

MMU Virtualization

Software solution: Shadow Page Tables

• Utilize the original CPU paging mechanism (CR3).

• Guest OS maintains gva to gpa mappings.

• Hypervisor maintains gpa to hpa mappings.

• Hypervisor establishes shadow page tables (gva  hpa).

Pros:

• Support unmodified guests.

• No specific hardware required.

Cons

• Performance issue (trap guest PT operations, etc).

• Complex software implementation.

GVA GPA HPA

CR3

15

MMU Virtualization

Hardware solution: Extended Page Tables (EPT)

• Bring in another paging dimension in hardware.

• Guest OS maintains gva to gpa mappings, loaded in CR3.

• Hypervisor maintains gpa to hpa mappings, loaded in EPTP.

Pros:

• Guest owns CR3 page table.

• Performance is highlight.

• Simplified software.
GVA GPA HPA

CR3 EPTP

16

Nested MMU Virtualization

Challenges

• Three dimensions of paging

 L2 gva  L2 gpa

 L2 gpa  L1 gpa

 L1 gpa  L0 hpa

• CPU only provides two dimension

 paging with EPT

Nested MMU virtualization combinations

• shadow on shadow

• shadow on EPT

• EPT on EPT

• EPT on shadow (No valuable significance)

EPT

Shadow

Shadow

Shadow

EPT

EPT

Legacy Solutions

17

Nested MMU Virtualization

Shadow on Shadow

• Use one dimension page table to emulate three.

• No specific hardware requirement, can use in old platforms.

• Performance is not good.

L2 GVA L2 GPA L1 GPA

SPT12

L0 HPA

SPT02, CR3

18

Nested MMU Virtualization

Shadow on EPT

• Use two dimension page tables to emulate three.

• Need EPT involvement.

• L2 page faults will trigger a lot of emulation effort.

L2 GVA L2 GPA L1 GPA

SPT12, CR3

L0 HPA

EPTP

19

I/O Virtualization

• Software communicate with device
• Port I/O

• MMIO

• Device transfer data to and from

system memory
• DMA access

• Events notification from device
• Interrupt

• Device discovery and configuration
• Configuration space access in PCI device

Processor

System

Memory

Device

Interrupt

I/O

DMA

20

I/O Virtualization

Software solution: Device emulation
• Maintain same SW interface (I/O, MMIO, INTR, DMA)

• Use arbitrary media to emulate virtualized device

Pros

• Transparent to VM software stack

• Agnostic to physical device in the platform. Thus
• Legacy SW can still run, even after HW upgrade

• Smooth VM migration across different platforms

• Good physical device sharing

Cons

• Un-optimum performance

• Cannot enjoy latest & greatest HW
• Lack of modern device emulation, since too complex

• Poor scalability

• Isolation and stability depends on implementation

Hypervisor

Device

Model

Native

Driver

Apps

I/O

VM Exit

Virtual Interrupt

IRQ
Emul IRQ

Driver

Device

Hardware

21

I/O Virtualization

Software solution: Para-virtualized I/O
• VMM presents a specialized virtual device to VM

• A new & efficient interface between VMM & VM driver
• Usually high-level abstraction

• Requires a specialized driver in VM

Pros

• Better performance

• Agnostic to physical device in the platform
• Legacy SW can still run, even after HW upgrade

• Smooth VM migration across different platforms

• Good physical device sharing

Cons

• Need install specialized driver in VM

• High CPU utilization (I/O interface and memory copy)

• Not so good scalability because of CPU utilization

VMM

Backend

Driver

Frontend

Driver

Apps

Hypercalls

Notifications
Driver

Device

Hardware

Share Memory

22

I/O Virtualization

Hardware solution: VT-d
• Assign a physical device to a VM directly

• VM access the device directly, w/ VMM intervention

 reduced to minimum

• Physical device access guest’s memory directly with

 help of Intel’s VT-d technology

Pros

• Near-to-native performance

• Minimum VMM intervention, thus low CPU utilization

• Good isolation

Cons

• Exclusive device access

• PCI slots in system is limited (SR-IOV)

VMM

Native

Driver

Apps

Device

Hardware

I/O IRQ

23

Nested I/O Virtualization

• Nested I/O Virtualization Combinations:

• L2 software emulation + L1 software emulation

• L2 software emulation + L1 PV

• L2 software emulation + L1 VT-d

• L2 PV + L1 software emulation

• L2 PV + L1 PV

• L2 PV + L1 VT-d

• Mixed Pros and Cons

• But, still need software intercept.

Optimizations with

Intel HW Feature

24

25

Nested CPU Optimization: Reduce VM Exits

Goal: Reduce heavy VM exits due to non-root VMREAD/VMWRITE

• L1VMM operates VMCS in

non-root mode

• VM exit will be triggered to

emulate the non-root

VMREAD/VMWRITE

• For a single virtual VM exit, L1

will trigger ~20

VMREAD/VMWRITE.

26

Nested CPU Optimization: Ideal Case

27

Nested CPU Optimization: VMCS Shadowing

• Hardware assisted non-root VMREAD/VMWRITE

• Shadow VMCS is linked to L1’s VMCS by VMCS Link Pointer

• No VMExit happened for non-root VMREAD/VMWRITE

L2

L1

L0

Shadow

VMCS

VMREAD

VMWRITE

VMCS01
VMCS Link Pointer

28

Nested MMU Optimization

EPT on EPT

• Use two dimension page tables to emulate three.

• Need EPT involvement.

• L2 fully owns its page tables.

• Best performance among the three solutions.

L2 GVA L2 GPA L1 GPA

EPT02, EPTP

L0 HPA

CR3

29

Virtual EPT Architecture

L0 VMM

L1 VMM

L2 Guest

vmcs12

EPT12

vmcs02

EPT02

S
h

a
d

o
w

in
g

L2 GPA  L1 GPA

L2 GPA  L0 HPA

S
h

a
d

o
w

in
g

vmcs01

EPT01

L1 GPA  L0 HPA

VM entry/exit

 Virtual VM entry/exit

30

Virtual EPT Performance

0

0.2

0.4

0.6

0.8

1

1.2

L2 w/o optimization

L2 w/ vEPT

L1

31

Nested I/O Optimization:

• I/O performance for L2 guest is very slow

• Due to extremely long device emulation path through all the way to L1 & L0 VMMs

• How to fix that?

• Present virtual VT-d engine to L1 VMM

• Device can be directly assigned to L2 guest

• High I/O performance, because of minimum VMM intervention.

• Must-to-have features in Virtual VT-d

• DMA Remapping & Queue Invalidation: Exposed

• Interrupt remapping: Not Exposed

32

Virtual VT-d Architecture

Bus 0

Bus N

Dev M FunN

Shadow VT-d page table

Device

L1 VMM

Guest view of VT-d

Bus 0
DevQ,Funy

DevP,Funn

VT-d page table

S
h

a
d

o
w

in
g

vDMAR

Virtual VT-d

vQI

L0 VMM

L2 Guest

33

Performance Evaluation of virtual VT-d

0

100

200

300

400

500

600

700

800

900

1000

1100

TCP Send TCP Receive UDP Send UDP Receive

Bandwidth of Nested Guest Ideal Bandwidth

Iperf testing with the assigned NIC to nested Guest

M
b

/s

Bandwidth is good enough!

34

Thank You!

Q & A?

