
RFC 9562

Universally Unique IDentifiers (UUIDs)

Abstract

This specification defines UUIDs (Universally Unique IDentifiers) -- also known as GUIDs

(Globally Unique IDentifiers) -- and a Uniform Resource Name namespace for UUIDs. A UUID is

128 bits long and is intended to guarantee uniqueness across space and time. UUIDs were

originally used in the Apollo Network Computing System (NCS), later in the Open Software

Foundation's (OSF's) Distributed Computing Environment (DCE), and then in Microsoft Windows

platforms.

This specification is derived from the OSF DCE specification with the kind permission of the OSF

(now known as "The Open Group"). Information from earlier versions of the OSF DCE

specification have been incorporated into this document. This document obsoletes RFC 4122.

Stream:

RFC:

Obsoletes:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9562

4122

Standards Track

May 2024

2070-1721

 K. Davis

Cisco Systems

B. Peabody

Uncloud

P. Leach

University of Washington

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9562

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

Davis, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9562
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/info/rfc9562

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Motivation

2.1. Update Motivation

3. Terminology

3.1. Requirements Language

3.2. Abbreviations

4. UUID Format

4.1. Variant Field

4.2. Version Field

5. UUID Layouts

5.1. UUID Version 1

5.2. UUID Version 2

5.3. UUID Version 3

5.4. UUID Version 4

5.5. UUID Version 5

5.6. UUID Version 6

5.7. UUID Version 7

5.8. UUID Version 8

5.9. Nil UUID

5.10. Max UUID

6. UUID Best Practices

6.1. Timestamp Considerations

6.2. Monotonicity and Counters

6.3. UUID Generator States

4

4

4

6

6

6

8

9

10

11

11

13

13

14

15

17

18

19

20

21

21

21

23

26

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

6.4. Distributed UUID Generation

6.5. Name-Based UUID Generation

6.6. Namespace ID Usage and Allocation

6.7. Collision Resistance

6.8. Global and Local Uniqueness

6.9. Unguessability

6.10. UUIDs That Do Not Identify the Host

6.11. Sorting

6.12. Opacity

6.13. DBMS and Database Considerations

7. IANA Considerations

7.1. IANA UUID Subtype Registry and Registration

7.2. IANA UUID Namespace ID Registry and Registration

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Test Vectors

A.1. Example of a UUIDv1 Value

A.2. Example of a UUIDv3 Value

A.3. Example of a UUIDv4 Value

A.4. Example of a UUIDv5 Value

A.5. Example of a UUIDv6 Value

A.6. Example of a UUIDv7 Value

Appendix B. Illustrative Examples

B.1. Example of a UUIDv8 Value (Time-Based)

B.2. Example of a UUIDv8 Value (Name-Based)

Acknowledgements

Authors' Addresses

27

28

29

30

30

31

31

32

32

32

33

33

34

34

35

35

36

39

39

40

41

41

42

43

44

44

44

46

46

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 3

1. Introduction

This specification defines a Uniform Resource Name namespace for Universally Unique

IDentifiers (UUIDs), also known as Globally Unique IDentifiers (GUIDs). A UUID is 128 bits long

and requires no central registration process.

The use of UUIDs is extremely pervasive in computing. They comprise the core identifier

infrastructure for many operating systems such as Microsoft Windows and applications such as

the Mozilla Web browser; in many cases, they can become exposed in many non-standard ways.

This specification attempts to standardize that practice as openly as possible and in a way that

attempts to benefit the entire Internet. The information here is meant to be a concise guide for

those wishing to implement services using UUIDs either in combination with URNs or

otherwise.

There is an ITU-T Recommendation and an ISO/IEC Standard that are derived from

. Both sets of specifications have been aligned and are fully technically compatible.

Nothing in this document should be construed to override the DCE standards that defined UUIDs.

[RFC8141]

[X667]

[RFC4122]

2. Motivation

One of the main reasons for using UUIDs is that no centralized authority is required to

administer them (although two formats may leverage optional IEEE 802 Node IDs, others do not).

As a result, generation on demand can be completely automated and used for a variety of

purposes. The UUID generation algorithm described here supports very high allocation rates of

10 million per second per machine or more, if necessary, so that they could even be used as

transaction IDs.

UUIDs are of a fixed size (128 bits), which is reasonably small compared to other alternatives.

This lends itself well to sorting, ordering, and hashing of all sorts; storing in databases; simple

allocation; and ease of programming in general.

Since UUIDs are unique and persistent, they make excellent URNs. The unique ability to generate

a new UUID without a registration process allows for UUIDs to be one of the URNs with the

lowest minting cost.

2.1. Update Motivation

Many things have changed in the time since UUIDs were originally created. Modern applications

have a need to create and utilize UUIDs as the primary identifier for a variety of different items

in complex computational systems, including but not limited to database keys, file names,

machine or system names, and identifiers for event-driven transactions.

One area in which UUIDs have gained popularity is database keys. This stems from the

increasingly distributed nature of modern applications. In such cases, "auto-increment" schemes

that are often used by databases do not work well: the effort required to coordinate sequential

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 4

numeric identifiers across a network can easily become a burden. The fact that UUIDs can be

used to create unique, reasonably short values in distributed systems without requiring

coordination makes them a good alternative, but UUID versions 1-5, which were originally

defined by , lack certain other desirable characteristics, such as:

UUID versions that are not time ordered, such as UUIDv4 (described in Section 5.4), have

poor database-index locality. This means that new values created in succession are not close

to each other in the index; thus, they require inserts to be performed at random locations.

The resulting negative performance effects on the common structures used for this (B-tree

and its variants) can be dramatic.

The 100-nanosecond Gregorian Epoch used in UUIDv1 timestamps (described in Section 5.1)

is uncommon and difficult to represent accurately using a standard number format such as

that described in .

Introspection/parsing is required to order by time sequence, as opposed to being able to

perform a simple byte-by-byte comparison.

Privacy and network security issues arise from using a Media Access Control (MAC) address

in the node field of UUIDv1. Exposed MAC addresses can be used as an attack surface to

locate network interfaces and reveal various other information about such machines

(minimally, the manufacturer and, potentially, other details). Additionally, with the advent of

virtual machines and containers, uniqueness of the MAC address is no longer guaranteed.

Many of the implementation details specified in involved trade-offs that are

neither possible to specify for all applications nor necessary to produce interoperable

implementations.

 did not distinguish between the requirements for generating a UUID and those for

simply storing one, although they are often different.

Due to the aforementioned issues, many widely distributed database applications and large

application vendors have sought to solve the problem of creating a better time-based, sortable

unique identifier for use as a database key. This has led to numerous implementations over the

past 10+ years solving the same problem in slightly different ways.

While preparing this specification, the following 16 different implementations were analyzed for

trends in total ID length, bit layout, lexical formatting and encoding, timestamp type, timestamp

format, timestamp accuracy, node format and components, collision handling, and multi-

timestamp tick generation sequencing:

[RFC4122]

1.

2.

[IEEE754]

3.

4.

5. [RFC4122]

6. [RFC4122]

1. [ULID]

2. [LexicalUUID]

3. [Snowflake]

4. [Flake]

5. [ShardingID]

6. [KSUID]

7. [Elasticflake]

8. [FlakeID]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 5

An inspection of these implementations and the issues described above has led to this document,

in which new UUIDs are adapted to address these issues.

Further, itself was in need of an overhaul to address a number of topics such as, but

not limited to, the following:

Implementation of miscellaneous errata reports. Mostly around bit-layout clarifications,

which lead to inconsistent implementations , , , ,

, etc.

Decoupling other UUID versions from the UUIDv1 bit layout so that fields like

"time_hi_and_version" do not need to be referenced within a UUID that is not time based

while also providing definition sections similar to that for UUIDv1 for UUIDv3, UUIDv4, and

UUIDv5.

Providing implementation best practices around many real-world scenarios and corner

cases observed by existing and prototype implementations.

Addressing security best practices and considerations for the modern age as it pertains to

MAC addresses, hashing algorithms, secure randomness, and other topics.

Providing implementations a standard-based option for implementation-specific and/or

experimental UUID designs.

Providing more test vectors that illustrate real UUIDs created as per the specification.

9. [Sonyflake]

10. [orderedUuid]

11. [COMBGUID]

12. [SID]

13. [pushID]

14. [XID]

15. [ObjectID]

16. [CUID]

[RFC4122]

1.

[Err1957] [Err3546] [Err4975] [Err4976]

[Err5560]

2.

3.

4.

5.

6.

3. Terminology

3.1. Requirements Language

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

ABNF

3.2. Abbreviations

The following abbreviations are used in this document:

Augmented Backus-Naur Form

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 6

CSPRNG

DBMS

IEEE

ITU

MAC

MD5

MSB

OID

SHA

SHA-1

SHA-3

SHA-224

SHA-256

SHA-512

SHAKE

URN

UTC

UUID

UUIDv1

UUIDv2

UUIDv3

UUIDv4

UUIDv5

UUIDv6

UUIDv7

UUIDv8

Cryptographically Secure Pseudorandom Number Generator

Database Management System

Institute of Electrical and Electronics Engineers

International Telecommunication Union

Media Access Control

Message Digest 5

Most Significant Bit

Object Identifier

Secure Hash Algorithm

Secure Hash Algorithm 1 (with message digest of 160 bits)

Secure Hash Algorithm 3 (arbitrary size)

Secure Hash Algorithm 2 with message digest size of 224 bits

Secure Hash Algorithm 2 with message digest size of 256 bits

Secure Hash Algorithm 2 with message digest size of 512 bits

Secure Hash Algorithm 3 based on the KECCAK algorithm

Uniform Resource Names

Coordinated Universal Time

Universally Unique Identifier

Universally Unique Identifier version 1

Universally Unique Identifier version 2

Universally Unique Identifier version 3

Universally Unique Identifier version 4

Universally Unique Identifier version 5

Universally Unique Identifier version 6

Universally Unique Identifier version 7

Universally Unique Identifier version 8

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 7

4. UUID Format

The UUID format is 16 octets (128 bits) in size; the variant bits in conjunction with the version

bits described in the next sections determine finer structure. In terms of these UUID formats and

layout, bit definitions start at 0 and end at 127, while octet definitions start at 0 and end at 15.

In the absence of explicit application or presentation protocol specification to the contrary, each

field is encoded with the most significant byte first (known as "network byte order").

Saving UUIDs to binary format is done by sequencing all fields in big-endian format. However,

there is a known caveat that Microsoft's Component Object Model (COM) GUIDs leverage little-

endian when saving GUIDs. The discussion of this (see) is outside the scope of

this specification.

UUIDs be represented as binary data or integers. When in use with URNs or as text in

applications, any given UUID should be represented by the "hex-and-dash" string format

consisting of multiple groups of uppercase or lowercase alphanumeric hexadecimal characters

separated by single dashes/hyphens. When used with databases, please refer to Section 6.13.

The formal definition of the UUID string representation is provided by the following ABNF

:

Note that the alphabetic characters may be all uppercase, all lowercase, or mixed case, as per

. An example UUID using this textual representation from the above

ABNF is shown in Figure 1.

The same UUID from Figure 1 is represented in binary (Figure 2), as an unsigned integer (Figure

3), and as a URN (Figure 4) defined by .

[MS_COM_GUID]

MAY

[RFC5234]

UUID = 4hexOctet "-"
 2hexOctet "-"
 2hexOctet "-"
 2hexOctet "-"
 6hexOctet
hexOctet = HEXDIG HEXDIG
DIGIT = %x30-39
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

Section 2.3 of [RFC5234]

Figure 1: Example String UUID Format

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

[RFC8141]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc5234#section-2.3

There are many other ways to define a UUID format; some examples are detailed below. Please

note that this is not an exhaustive list and is only provided for informational purposes.

Some UUID implementations, such as those found in and , will output

UUID with the string format, including dashes, enclosed in curly braces.

 provides UUID format definitions for use of UUID with an OID.

 is a legacy implementation that produces a unique UUID format compatible with

Variant 0xx of Table 1.

Figure 2: Example Binary UUID

111110000001110101001111101011100111110111101100000100011101000\
01010011101100101000000001010000011001001000111100110101111110110

Figure 3: Example Unsigned Integer UUID (Shown as a Decimal Number)

329800735698586629295641978511506172918

Figure 4: Example URN Namespace for UUID

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

• [Python] [Microsoft]

• [X667]

• [IBM_NCS]

4.1. Variant Field

The variant field determines the layout of the UUID. That is, the interpretation of all other bits in

the UUID depends on the setting of the bits in the variant field. As such, it could more accurately

be called a "type" field; we retain the original term for compatibility. The variant field consists of

a variable number of the most significant bits of octet 8 of the UUID.

Table 1 lists the contents of the variant field, where the letter "x" indicates a "don't-care" value.

MSB0 MSB1 MSB2 MSB3 Variant Description

0 x x x 1-7 Reserved. Network Computing System (NCS)

backward compatibility, and includes Nil UUID

as per Section 5.9.

1 0 x x 8-9,A-B The variant specified in this document.

1 1 0 x C-D Reserved. Microsoft Corporation backward

compatibility.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 9

Interoperability, in any form, with variants other than the one defined here is not guaranteed but

is not likely to be an issue in practice.

Specifically for UUIDs in this document, bits 64 and 65 of the UUID (bits 0 and 1 of octet 8)

be set to 1 and 0 as specified in row 2 of Table 1. Accordingly, all bit and field layouts avoid the

use of these bits.

MSB0 MSB1 MSB2 MSB3 Variant Description

1 1 1 x E-F Reserved for future definition and includes

Max UUID as per Section 5.10.

Table 1: UUID Variants

MUST

4.2. Version Field

The version number is in the most significant 4 bits of octet 6 (bits 48 through 51 of the UUID).

Table 2 lists all of the versions for this UUID variant 10xx specified in this document.

MSB0 MSB1 MSB2 MSB3 Version Description

0 0 0 0 0 Unused.

0 0 0 1 1 The Gregorian time-based UUID specified in

this document.

0 0 1 0 2 Reserved for DCE Security version, with

embedded POSIX UUIDs.

0 0 1 1 3 The name-based version specified in this

document that uses MD5 hashing.

0 1 0 0 4 The randomly or pseudorandomly generated

version specified in this document.

0 1 0 1 5 The name-based version specified in this

document that uses SHA-1 hashing.

0 1 1 0 6 Reordered Gregorian time-based UUID

specified in this document.

0 1 1 1 7 Unix Epoch time-based UUID specified in this

document.

1 0 0 0 8 Reserved for custom UUID formats specified in

this document.

1 0 0 1 9 Reserved for future definition.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 10

An example version/variant layout for UUIDv4 follows the table where "M" represents the

version placement for the hexadecimal representation of 0x4 (0b0100) and the "N" represents the

variant placement for one of the four possible hexadecimal representation of variant 10xx: 0x8

(0b1000), 0x9 (0b1001), 0xA (0b1010), 0xB (0b1011).

It should be noted that the other remaining UUID variants found in Table 1 leverage different

sub-typing or versioning mechanisms. The recording and definition of the remaining UUID

variant and sub-typing combinations are outside of the scope of this document.

MSB0 MSB1 MSB2 MSB3 Version Description

1 0 1 0 10 Reserved for future definition.

1 0 1 1 11 Reserved for future definition.

1 1 0 0 12 Reserved for future definition.

1 1 0 1 13 Reserved for future definition.

1 1 1 0 14 Reserved for future definition.

1 1 1 1 15 Reserved for future definition.

Table 2: UUID Variant 10xx Versions Defined by This Specification

Figure 5: UUIDv4 Variant Examples

00000000-0000-4000-8000-000000000000
00000000-0000-4000-9000-000000000000
00000000-0000-4000-A000-000000000000
00000000-0000-4000-B000-000000000000
xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx

5. UUID Layouts

To minimize confusion about bit assignments within octets and among differing versions, the

UUID record definition is provided as a grouping of fields within a bit layout consisting of four

octets per row. The fields are presented with the most significant one first.

5.1. UUID Version 1

UUIDv1 is a time-based UUID featuring a 60-bit timestamp represented by Coordinated Universal

Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of

Gregorian reform to the Christian calendar).

UUIDv1 also features a clock sequence field that is used to help avoid duplicates that could arise

when the clock is set backwards in time or if the Node ID changes.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 11

The node field consists of an IEEE 802 MAC address, usually the host address or a randomly

derived value per Sections 6.9 and 6.10.

time_low:

The least significant 32 bits of the 60-bit starting timestamp. Occupies bits 0 through 31 (octets

0-3).

time_mid:

The middle 16 bits of the 60-bit starting timestamp. Occupies bits 32 through 47 (octets 4-5).

ver:

The 4-bit version field as defined by Section 4.2, set to 0b0001 (1). Occupies bits 48 through 51

of octet 6.

time_high:

The least significant 12 bits from the 60-bit starting timestamp. Occupies bits 52 through 63

(octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

clock_seq:

The 14 bits containing the clock sequence. Occupies bits 66 through 79 (octets 8-9).

node:

48-bit spatially unique identifier. Occupies bits 80 through 127 (octets 10-15).

For systems that do not have UTC available but do have the local time, they may use that instead

of UTC as long as they do so consistently throughout the system. However, this is not

recommended since generating the UTC from local time only needs a time-zone offset.

Figure 6: UUIDv1 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time_low |
+-+
| time_mid | ver | time_high |
+-+
|var| clock_seq | node |
+-+
| node |
+-+

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 12

If the clock is set backwards, or if it might have been set backwards (e.g., while the system was

powered off), and the UUID generator cannot be sure that no UUIDs were generated with

timestamps larger than the value to which the clock was set, then the clock sequence be

changed. If the previous value of the clock sequence is known, it be incremented; otherwise

it be set to a random or high-quality pseudorandom value.

Similarly, if the Node ID changes (e.g., because a network card has been moved between

machines), setting the clock sequence to a random number minimizes the probability of a

duplicate due to slight differences in the clock settings of the machines. If the value of the clock

sequence associated with the changed Node ID were known, then the clock sequence be

incremented, but that is unlikely.

The clock sequence be originally (i.e., once in the lifetime of a system) initialized to a

random number to minimize the correlation across systems. This provides maximum protection

against Node IDs that may move or switch from system to system rapidly. The initial value

 be correlated to the Node ID.

Notes about nodes derived from IEEE 802:

On systems with multiple IEEE 802 addresses, any available one be used.

On systems with no IEEE address, a randomly or pseudorandomly generated value be

used; see Sections 6.9 and 6.10.

On systems utilizing a 64-bit MAC address, the least significant, rightmost 48 bits be

used.

Systems utilizing an IEEE 802.15.4 16-bit address instead utilize their 64-bit MAC

address where the least significant, rightmost 48 bits be used. An alternative is to

generate 32 bits of random data and postfix at the end of the 16-bit MAC address to create a

48-bit value.

MUST

MAY

SHOULD

MAY

MUST

MUST

NOT

• MAY

• MUST

• MAY

• SHOULD

MAY

5.2. UUID Version 2

UUIDv2 is for DCE Security UUIDs (see and). As such, the definition of these UUIDs

is outside the scope of this specification.

[C309] [C311]

5.3. UUID Version 3

UUIDv3 is meant for generating UUIDs from names that are drawn from, and unique within,

some namespace as per Section 6.5.

UUIDv3 values are created by computing an MD5 hash over a given Namespace ID

value (Section 6.6) concatenated with the desired name value after both have been converted to

a canonical sequence of octets, as defined by the standards or conventions of its namespace, in

network byte order. This MD5 value is then used to populate all 128 bits of the UUID layout. The

UUID version and variant then replace the respective bits as defined by Sections 4.2 and 4.1. An

example of this bit substitution can be found in Appendix A.2.

[RFC1321]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 13

Information around selecting a desired name's canonical format within a given namespace can

be found in Section 6.5 under the heading "A note on names".

Where possible, UUIDv5 be used in lieu of UUIDv3. For more information on MD5

security considerations, see .

md5_high:

The first 48 bits of the layout are filled with the most significant, leftmost 48 bits from the

computed MD5 value. Occupies bits 0 through 47 (octets 0-5).

ver:

The 4-bit version field as defined by Section 4.2, set to 0b0011 (3). Occupies bits 48 through 51

of octet 6.

md5_mid:

12 more bits of the layout consisting of the least significant, rightmost 12 bits of 16 bits

immediately following md5_high from the computed MD5 value. Occupies bits 52 through 63

(octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

md5_low:

The final 62 bits of the layout immediately following the var field to be filled with the least

significant, rightmost bits of the final 64 bits from the computed MD5 value. Occupies bits 66

through 127 (octets 8-15)

SHOULD

[RFC6151]

Figure 7: UUIDv3 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| md5_high |
+-+
| md5_high | ver | md5_mid |
+-+
|var| md5_low |
+-+
| md5_low |
+-+

5.4. UUID Version 4

UUIDv4 is meant for generating UUIDs from truly random or pseudorandom numbers.

An implementation may generate 128 bits of random data that is used to fill out the UUID fields

in Figure 8. The UUID version and variant then replace the respective bits as defined by Sections

4.1 and 4.2.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 14

Alternatively, an implementation choose to randomly generate the exact required number

of bits for random_a, random_b, and random_c (122 bits total) and then concatenate the version

and variant in the required position.

For guidelines on random data generation, see Section 6.9.

random_a:

The first 48 bits of the layout that can be filled with random data as specified in Section 6.9.

Occupies bits 0 through 47 (octets 0-5).

ver:

The 4-bit version field as defined by Section 4.2, set to 0b0100 (4). Occupies bits 48 through 51

of octet 6.

random_b:

12 more bits of the layout that can be filled random data as per Section 6.9. Occupies bits 52

through 63 (octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

random_c:

The final 62 bits of the layout immediately following the var field to be filled with random

data as per Section 6.9. Occupies bits 66 through 127 (octets 8-15).

MAY

Figure 8: UUIDv4 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| random_a |
+-+
| random_a | ver | random_b |
+-+
|var| random_c |
+-+
| random_c |
+-+

5.5. UUID Version 5

UUIDv5 is meant for generating UUIDs from "names" that are drawn from, and unique within,

some "namespace" as per Section 6.5.

UUIDv5 values are created by computing an SHA-1 hash over a given Namespace ID

value (Section 6.6) concatenated with the desired name value after both have been converted to

a canonical sequence of octets, as defined by the standards or conventions of its namespace, in

network byte order. The most significant, leftmost 128 bits of the SHA-1 value are then used to

[FIPS180-4]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 15

populate all 128 bits of the UUID layout, and the remaining 32 least significant, rightmost bits of

SHA-1 output are discarded. The UUID version and variant then replace the respective bits as

defined by Sections 4.2 and 4.1. An example of this bit substitution and discarding excess bits can

be found in Appendix A.4.

Information around selecting a desired name's canonical format within a given namespace can

be found in Section 6.5 under the heading "A note on names".

There may be scenarios, usually depending on organizational security policies, where SHA-1

libraries may not be available or may be deemed unsafe for use. As such, it may be desirable to

generate name-based UUIDs derived from SHA-256 or newer SHA methods. These name-based

UUIDs utilize UUIDv5 and be within the UUIDv8 space defined by Section 5.8. An

illustrative example of UUIDv8 for SHA-256 name-based UUIDs is provided in Appendix B.2.

For more information on SHA-1 security considerations, see .

sha1_high:

The first 48 bits of the layout are filled with the most significant, leftmost 48 bits from the

computed SHA-1 value. Occupies bits 0 through 47 (octets 0-5).

ver:

The 4-bit version field as defined by Section 4.2, set to 0b0101 (5). Occupies bits 48 through 51

of octet 6.

sha1_mid:

12 more bits of the layout consisting of the least significant, rightmost 12 bits of 16 bits

immediately following sha1_high from the computed SHA-1 value. Occupies bits 52 through

63 (octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

MUST NOT MUST

[RFC6194]

Figure 9: UUIDv5 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| sha1_high |
+-+
| sha1_high | ver | sha1_mid |
+-+
|var| sha1_low |
+-+
| sha1_low |
+-+

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 16

sha1_low:

The final 62 bits of the layout immediately following the var field to be filled by skipping the

two most significant, leftmost bits of the remaining SHA-1 hash and then using the next 62

most significant, leftmost bits. Any leftover SHA-1 bits are discarded and unused. Occupies

bits 66 through 127 (octets 8-15).

5.6. UUID Version 6

UUIDv6 is a field-compatible version of UUIDv1 (Section 5.1), reordered for improved DB locality.

It is expected that UUIDv6 will primarily be implemented in contexts where UUIDv1 is used.

Systems that do not involve legacy UUIDv1 use UUIDv7 (Section 5.7) instead.

Instead of splitting the timestamp into the low, mid, and high sections from UUIDv1, UUIDv6

changes this sequence so timestamp bytes are stored from most to least significant. That is, given

a 60-bit timestamp value as specified for UUIDv1 in Section 5.1, for UUIDv6 the first 48 most

significant bits are stored first, followed by the 4-bit version (same position), followed by the

remaining 12 bits of the original 60-bit timestamp.

The clock sequence and node bits remain unchanged from their position in Section 5.1.

The clock sequence and node bits be reset to a pseudorandom value for each new

UUIDv6 generated; however, implementations choose to retain the old clock sequence and

MAC address behavior from Section 5.1. For more information on MAC address usage within

UUIDs, see the Section 8.

The format for the 16-byte, 128-bit UUIDv6 is shown in Figure 10.

time_high:

The most significant 32 bits of the 60-bit starting timestamp. Occupies bits 0 through 31 (octets

0-3).

time_mid:

The middle 16 bits of the 60-bit starting timestamp. Occupies bits 32 through 47 (octets 4-5).

SHOULD

SHOULD

MAY

Figure 10: UUIDv6 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time_high |
+-+
| time_mid | ver | time_low |
+-+
|var| clock_seq | node |
+-+
| node |
+-+

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 17

ver:

The 4-bit version field as defined by Section 4.2, set to 0b0110 (6). Occupies bits 48 through 51

of octet 6.

time_low:

12 bits that will contain the least significant 12 bits from the 60-bit starting timestamp.

Occupies bits 52 through 63 (octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

clock_seq:

The 14 bits containing the clock sequence. Occupies bits 66 through 79 (octets 8-9).

node:

48-bit spatially unique identifier. Occupies bits 80 through 127 (octets 10-15).

With UUIDv6, the steps for splitting the timestamp into time_high and time_mid are

since the 48 bits of time_high and time_mid will remain in the same order. An extra step of

splitting the first 48 bits of the timestamp into the most significant 32 bits and least significant 16

bits proves useful when reusing an existing UUIDv1 implementation.

OPTIONAL

5.7. UUID Version 7

UUIDv7 features a time-ordered value field derived from the widely implemented and well-

known Unix Epoch timestamp source, the number of milliseconds since midnight 1 Jan 1970 UTC,

leap seconds excluded. Generally, UUIDv7 has improved entropy characteristics over UUIDv1

(Section 5.1) or UUIDv6 (Section 5.6).

UUIDv7 values are created by allocating a Unix timestamp in milliseconds in the most significant

48 bits and filling the remaining 74 bits, excluding the required version and variant bits, with

random bits for each new UUIDv7 generated to provide uniqueness as per Section 6.9.

Alternatively, implementations fill the 74 bits, jointly, with a combination of the following

subfields, in this order from the most significant bits to the least, to guarantee additional

monotonicity within a millisecond:

An sub-millisecond timestamp fraction (12 bits at maximum) as per Section 6.2

(Method 3).

An carefully seeded counter as per Section 6.2 (Method 1 or 2).

Random data for each new UUIDv7 generated for any remaining space.

Implementations utilize UUIDv7 instead of UUIDv1 and UUIDv6 if possible.

MAY

1. OPTIONAL

2. OPTIONAL

3.

SHOULD

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 18

unix_ts_ms:

48-bit big-endian unsigned number of the Unix Epoch timestamp in milliseconds as per

Section 6.1. Occupies bits 0 through 47 (octets 0-5).

ver:

The 4-bit version field as defined by Section 4.2, set to 0b0111 (7). Occupies bits 48 through 51

of octet 6.

rand_a:

12 bits of pseudorandom data to provide uniqueness as per Section 6.9 and/or optional

constructs to guarantee additional monotonicity as per Section 6.2. Occupies bits 52 through

63 (octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

rand_b:

The final 62 bits of pseudorandom data to provide uniqueness as per Section 6.9 and/or an

optional counter to guarantee additional monotonicity as per Section 6.2. Occupies bits 66

through 127 (octets 8-15).

Figure 11: UUIDv7 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| unix_ts_ms |
+-+
| unix_ts_ms | ver | rand_a |
+-+
|var| rand_b |
+-+
| rand_b |
+-+

5.8. UUID Version 8

UUIDv8 provides a format for experimental or vendor-specific use cases. The only requirement is

that the variant and version bits be set as defined in Sections 4.1 and 4.2. UUIDv8's

uniqueness will be implementation specific and be assumed.

The only explicitly defined bits are those of the version and variant fields, leaving 122 bits for

implementation-specific UUIDs. To be clear, UUIDv8 is not a replacement for UUIDv4 (Section 5.4)

where all 122 extra bits are filled with random data.

MUST

MUST NOT

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 19

Some example situations in which UUIDv8 usage could occur:

An implementation would like to embed extra information within the UUID other than what

is defined in this document.

An implementation has other application and/or language restrictions that inhibit the use of

one of the current UUIDs.

Appendix B provides two illustrative examples of custom UUIDv8 algorithms to address two

example scenarios.

custom_a:

The first 48 bits of the layout that can be filled as an implementation sees fit. Occupies bits 0

through 47 (octets 0-5).

ver:

The 4-bit version field as defined by Section 4.2, set to 0b1000 (8). Occupies bits 48 through 51

of octet 6.

custom_b:

12 more bits of the layout that can be filled as an implementation sees fit. Occupies bits 52

through 63 (octets 6-7).

var:

The 2-bit variant field as defined by Section 4.1, set to 0b10. Occupies bits 64 and 65 of octet 8.

custom_c:

The final 62 bits of the layout immediately following the var field to be filled as an

implementation sees fit. Occupies bits 66 through 127 (octets 8-15).

•

•

Figure 12: UUIDv8 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| custom_a |
+-+
| custom_a | ver | custom_b |
+-+
|var| custom_c |
+-+
| custom_c |
+-+

5.9. Nil UUID

The Nil UUID is special form of UUID that is specified to have all 128 bits set to zero.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 20

A Nil UUID value can be useful to communicate the absence of any other UUID value in situations

that otherwise require or use a 128-bit UUID. A Nil UUID can express the concept "no such value

here". Thus, it is reserved for such use as needed for implementation-specific situations.

Note that the Nil UUID value falls within the range of the Apollo NCS variant as per the first row

of Table 1 rather than the variant defined by this document.

Figure 13: Nil UUID Format

00000000-0000-0000-0000-000000000000

5.10. Max UUID

The Max UUID is a special form of UUID that is specified to have all 128 bits set to 1. This UUID

can be thought of as the inverse of the Nil UUID defined in Section 5.9.

A Max UUID value can be used as a sentinel value in situations where a 128-bit UUID is required,

but a concept such as "end of UUID list" needs to be expressed and is reserved for such use as

needed for implementation-specific situations.

Note that the Max UUID value falls within the range of the "yet-to-be defined" future UUID

variant as per the last row of Table 1 rather than the variant defined by this document.

Figure 14: Max UUID Format

FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFFF

6. UUID Best Practices

The minimum requirements for generating UUIDs of each version are described in this

document. Everything else is an implementation detail, and it is up to the implementer to decide

what is appropriate for a given implementation. Various relevant factors are covered below to

help guide an implementer through the different trade-offs among differing UUID

implementations.

6.1. Timestamp Considerations

UUID timestamp source, precision, and length were topics of great debate while creating UUIDv7

for this specification. Choosing the right timestamp for your application is very important. This

section will detail some of the most common points on this issue.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 21

Reliability:

Implementations acquire the current timestamp from a reliable source to provide values that

are time ordered and continually increasing. Care must be taken to ensure that timestamp

changes from the environment or operating system are handled in a way that is consistent

with implementation requirements. For example, if it is possible for the system clock to move

backward due to either manual adjustment or corrections from a time synchronization

protocol, implementations need to determine how to handle such cases. (See "Altering,

Fuzzing, or Smearing" below.)

Source:

UUIDv1 and UUIDv6 both utilize a Gregorian Epoch timestamp, while UUIDv7 utilizes a Unix

Epoch timestamp. If other timestamp sources or a custom timestamp Epoch are required,

UUIDv8 be used.

Sub-second Precision and Accuracy:

Many levels of precision exist for timestamps: milliseconds, microseconds, nanoseconds, and

beyond. Additionally, fractional representations of sub-second precision may be desired to

mix various levels of precision in a time-ordered manner. Furthermore, system clocks

themselves have an underlying granularity, which is frequently less than the precision

offered by the operating system. With UUIDv1 and UUIDv6, 100 nanoseconds of precision are

present, while UUIDv7 features a millisecond level of precision by default within the Unix

Epoch that does not exceed the granularity capable in most modern systems. For other levels

of precision, UUIDv8 is available. Similar to Section 6.2, with UUIDv1 or UUIDv6, a high-

resolution timestamp can be simulated by keeping a count of the number of UUIDs that have

been generated with the same value of the system time and using that count to construct the

low order bits of the timestamp. The count of the high-resolution timestamp will range

between zero and the number of 100-nanosecond intervals per system-time interval.

Length:

The length of a given timestamp directly impacts how many timestamp ticks can be contained

in a UUID before the maximum value for the timestamp field is reached. Take care to ensure

that the proper length is selected for a given timestamp. UUIDv1 and UUIDv6 utilize a 60-bit

timestamp valid until 5623 AD; UUIDv7 features a 48-bit timestamp valid until the year 10889

AD.

Altering, Fuzzing, or Smearing:

Implementations alter the actual timestamp. Some examples include security

considerations around providing a real-clock value within a UUID to 1) correct inaccurate

clocks, 2) handle leap seconds, or 3) obtain a millisecond value by dividing by 1024 (or some

other value) for performance reasons (instead of dividing a number of microseconds by

1000). This specification makes no requirement or guarantee about how close the clock value

needs to be to the actual time. If UUIDs do not need to be frequently generated, the UUIDv1 or

UUIDv6 timestamp can simply be the system time multiplied by the number of 100-

nanosecond intervals per system-time interval.

MUST

MAY

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 22

Padding:

When timestamp padding is required, implementations pad the most significant bits

(leftmost) with data. An example for this padding data is to fill the most significant, leftmost

bits of a Unix timestamp with zeroes to complete the 48-bit timestamp in UUIDv7. An

alternative approach for padding data is to fill the most significant, leftmost bits with the

number of 32-bit Unix timestamp rollovers after 2038-01-19.

Truncating:

When timestamps need to be truncated, the lower, least significant bits be used. An

example would be truncating a 64-bit Unix timestamp to the least significant, rightmost 48

bits for UUIDv7.

Error Handling:

If a system overruns the generator by requesting too many UUIDs within a single system-time

interval, the UUID service can return an error or stall the UUID generator until the system

clock catches up and knowingly return duplicate values due to a counter rollover.

Note that if the processors overrun the UUID generation frequently, additional Node IDs can

be allocated to the system, which will permit higher speed allocation by making multiple

UUIDs potentially available for each timestamp value. Similar techniques are discussed in

Section 6.4.

MUST

MUST

MUST NOT

6.2. Monotonicity and Counters

Monotonicity (each subsequent value being greater than the last) is the backbone of time-based

sortable UUIDs. Normally, time-based UUIDs from this document will be monotonic due to an

embedded timestamp; however, implementations can guarantee additional monotonicity via the

concepts covered in this section.

Take care to ensure UUIDs generated in batches are also monotonic. That is, if one thousand

UUIDs are generated for the same timestamp, there should be sufficient logic for organizing the

creation order of those one thousand UUIDs. Batch UUID creation implementations utilize a

monotonic counter that increments for each UUID created during a given timestamp.

For single-node UUID implementations that do not need to create batches of UUIDs, the

embedded timestamp within UUIDv6 and UUIDv7 can provide sufficient monotonicity

guarantees by simply ensuring that timestamp increments before creating a new UUID.

Distributed nodes are discussed in Section 6.4.

Implementations employ the following methods for single-node UUID implementations

that require batch UUID creation or are otherwise concerned about monotonicity with high-

frequency UUID generation.

Fixed Bit-Length Dedicated Counter (Method 1):

Some implementations allocate a specific number of bits in the UUID layout to the sole

purpose of tallying the total number of UUIDs created during a given UUID timestamp tick. If

present, a fixed bit-length counter be positioned immediately after the embedded

timestamp. This promotes sortability and allows random data generation for each counter

MAY

SHOULD

MUST

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 23

increment. With this method, the rand_a section (or a subset of its leftmost bits) of UUIDv7 is

used as a fixed bit-length dedicated counter that is incremented for every UUID generation.

The trailing random bits generated for each new UUID in rand_b can help produce

unguessable UUIDs. In the event that more counter bits are required, the most significant

(leftmost) bits of rand_b be used as additional counter bits.

Monotonic Random (Method 2):

With this method, the random data is extended to also function as a counter. This monotonic

value can be thought of as a "randomly seeded counter" that be incremented in the least

significant position for each UUID created on a given timestamp tick. UUIDv7's rand_b section

 be utilized with this method to handle batch UUID generation during a single

timestamp tick. The increment value for every UUID generation is a random integer of any

desired length larger than zero. It ensures that the UUIDs retain the required level of

unguessability provided by the underlying entropy. The increment value be 1 when the

number of UUIDs generated in a particular period of time is important and guessability is not

an issue. However, incrementing the counter by 1 be used by implementations

that favor unguessability, as the resulting values are easily guessable.

Replace Leftmost Random Bits with Increased Clock Precision (Method 3):

For UUIDv7, which has millisecond timestamp precision, it is possible to use additional clock

precision available on the system to substitute for up to 12 random bits immediately following

the timestamp. This can provide values that are time ordered with sub-millisecond precision,

using however many bits are appropriate in the implementation environment. With this

method, the additional time precision bits follow the timestamp as the next available bit

in the rand_a field for UUIDv7.

To calculate this value, start with the portion of the timestamp expressed as a fraction of the

clock's tick value (fraction of a millisecond for UUIDv7). Compute the count of possible values

that can be represented in the available bit space, 4096 for the UUIDv7 rand_a field. Using

floating point or scaled integer arithmetic, multiply this fraction of a millisecond value by

4096 and round down (toward zero) to an integer result to arrive at a number between 0 and

the maximum allowed for the indicated bits, which sorts monotonically based on time. Each

increasing fractional value will result in an increasing bit field value to the precision

available with these bits.

For example, let's assume a system timestamp of 1 Jan 2023 12:34:56.1234567. Taking the

precision greater than 1 ms gives us a value of 0.4567, as a fraction of a millisecond. If we

wish to encode this as 12 bits, we can take the count of possible values that fit in those bits

(4096 or 2
12

), multiply it by our millisecond fraction value of 0.4567, and truncate the result to

an integer, which gives an integer value of 1870. Expressed as hexadecimal, it is 0x74E or the

binary bits 0b011101001110. One can then use those 12 bits as the most significant (leftmost)

portion of the random section of the UUID (e.g., the rand_a field in UUIDv7). This works for

any desired bit length that fits into a UUID, and applications can decide the appropriate length

based on available clock precision; for UUIDv7, it is limited to 12 bits at maximum to reserve

sufficient space for random bits.

MAY

MUST

SHOULD

MAY

SHOULD NOT

MUST

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 24

The main benefit to encoding additional timestamp precision is that it utilizes additional time

precision already available in the system clock to provide values that are more likely to be

unique; thus, it may simplify certain implementations. This technique can also be used in

conjunction with one of the other methods, where this additional time precision would

immediately follow the timestamp. Then, if any bits are to be used as a clock sequence, they

would follow next.

The following sub-topics cover issues related solely to creating reliable fixed bit-length dedicated

counters:

Fixed Bit-Length Dedicated Counter Seeding:

Implementations utilizing the fixed bit-length counter method randomly initialize the counter

with each new timestamp tick. However, when the timestamp has not increased, the counter

is instead incremented by the desired increment logic. When utilizing a randomly seeded

counter alongside Method 1, the random value be regenerated with each counter

increment without impacting sortability. The downside is that Method 1 is prone to overflows

if a counter of adequate length is not selected or the random data generated leaves little room

for the required number of increments. Implementations utilizing fixed bit-length counter

method also choose to randomly initialize a portion of the counter rather than the entire

counter. For example, a 24-bit counter could have the 23 bits in least significant, rightmost

position randomly initialized. The remaining most significant, leftmost counter bit is

initialized as zero for the sole purpose of guarding against counter rollovers.

Fixed Bit-Length Dedicated Counter Length:

Select a counter bit-length that can properly handle the level of timestamp precision in use.

For example, millisecond precision generally requires a larger counter than a timestamp with

nanosecond precision. General guidance is that the counter be at least 12 bits but no

longer than 42 bits. Care must be taken to ensure that the counter length selected leaves room

for sufficient entropy in the random portion of the UUID after the counter. This entropy helps

improve the unguessability characteristics of UUIDs created within the batch.

The following sub-topics cover rollover handling with either type of counter method:

Counter Rollover Guards:

The technique from "Fixed Bit-Length Dedicated Counter Seeding" above that describes

allocating a segment of the fixed bit-length counter as a rollover guard is also helpful to

mitigate counter rollover issues. This same technique can be used with monotonic random

counter methods by ensuring that the total length of a possible increment in the least

significant, rightmost position is less than the total length of the random value being

incremented. As such, the most significant, leftmost bits can be incremented as rollover

guarding.

MAY

MAY

SHOULD

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 25

Counter Rollover Handling:

Counter rollovers be handled by the application to avoid sorting issues. The general

guidance is that applications that care about absolute monotonicity and sortability should

freeze the counter and wait for the timestamp to advance, which ensures monotonicity is not

broken. Alternatively, implementations increment the timestamp ahead of the actual

time and reinitialize the counter.

Implementations use the following logic to ensure UUIDs featuring embedded counters are

monotonic in nature:

Compare the current timestamp against the previously stored timestamp.

If the current timestamp is equal to the previous timestamp, increment the counter

according to the desired method.

If the current timestamp is greater than the previous timestamp, re-initialize the desired

counter method to the new timestamp and generate new random bytes (if the bytes were

frozen or being used as the seed for a monotonic counter).

Monotonic Error Checking:

Implementations check if the currently generated UUID is greater than the

previously generated UUID. If this is not the case, then any number of things could have

occurred, such as clock rollbacks, leap second handling, and counter rollovers. Applications

 embed sufficient logic to catch these scenarios and correct the problem to ensure

that the next UUID generated is greater than the previous, or they should at least report an

appropriate error. To handle this scenario, the general guidance is that the application

reuse the previous timestamp and increment the previous counter method.

MUST

MAY

MAY

1.

2.

3.

SHOULD

SHOULD

MAY

6.3. UUID Generator States

The (optional) UUID generator state only needs to be read from stable storage once at boot time,

if it is read into a system-wide shared volatile store (and updated whenever the stable store is

updated).

This stable storage be used to record various portions of the UUID generation, which prove

useful for batch UUID generation purposes and monotonic error checking with UUIDv6 and

UUIDv7. These stored values include but are not limited to last known timestamp, clock

sequence, counters, and random data.

If an implementation does not have any stable store available, then it proceed with UUID

generation as if this were the first UUID created within a batch. This is the least desirable

implementation because it will increase the frequency of creation of values such as clock

sequence, counters, or random data, which increases the probability of duplicates. Further,

frequent generation of random numbers also puts more stress on any entropy source and/or

entropy pool being used as the basis for such random numbers.

MAY

MAY

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 26

An implementation also return an application error in the event that collision resistance is

of the utmost concern. The semantics of this error are up to the application and implementation.

See Section 6.7 for more information on weighting collision tolerance in applications.

For UUIDv1 and UUIDv6, if the Node ID can never change (e.g., the network interface card from

which the Node ID is derived is inseparable from the system), or if any change also re-initializes

the clock sequence to a random value, then instead of keeping it in stable store, the current Node

ID may be returned.

For UUIDv1 and UUIDv6, the state does not always need to be written to stable store every time a

UUID is generated. The timestamp in the stable store can periodically be set to a value larger

than any yet used in a UUID. As long as the generated UUIDs have timestamps less than that

value, and the clock sequence and Node ID remain unchanged, only the shared volatile copy of

the state needs to be updated. Furthermore, if the timestamp value in stable store is in the future

by less than the typical time it takes the system to reboot, a crash will not cause a re-initialization

of the clock sequence.

If it is too expensive to access shared state each time a UUID is generated, then the system-wide

generator can be implemented to allocate a block of timestamps each time it is called; a per-

process generator can allocate from that block until it is exhausted.

MAY

6.4. Distributed UUID Generation

Some implementations desire the utilization of multi-node, clustered, applications that

involve two or more nodes independently generating UUIDs that will be stored in a common

location. While UUIDs already feature sufficient entropy to ensure that the chances of collision

are low, as the total number of UUID generating nodes increases, so does the likelihood of a

collision.

This section will detail the two additional collision resistance approaches that have been

observed by multi-node UUID implementations in distributed environments.

It should be noted that, although this section details two methods for the sake of completeness,

implementations should utilize the pseudorandom Node ID option if additional collision

resistance for distributed UUID generation is a requirement. Likewise, utilization of either

method is not required for implementing UUID generation in distributed environments.

Node IDs:

With this method, a pseudorandom Node ID value is placed within the UUID layout. This

identifier helps ensure the bit space for a given node is unique, resulting in UUIDs that do not

conflict with any other UUID created by another node with a different node id.

Implementations that choose to leverage an embedded node id utilize UUIDv8. The

node id be an IEEE 802 MAC address per Section 8. The location and bit length

are left to implementations and are outside the scope of this specification. Furthermore, the

creation and negotiation of unique node ids among nodes is also out of scope for this

specification.

MAY

SHOULD

SHOULD NOT

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 27

Centralized Registry:

With this method, all nodes tasked with creating UUIDs consult a central registry and confirm

the generated value is unique. As applications scale, the communication with the central

registry could become a bottleneck and impact UUID generation in a negative way. Shared

knowledge schemes with central/global registries are outside the scope of this specification

and are .

Distributed applications generating UUIDs at a variety of hosts be willing to rely on the

random number source at all hosts.

NOT RECOMMENDED

MUST

6.5. Name-Based UUID Generation

Although some prefer to use the word "hash-based" to describe UUIDs featuring hashing

algorithms (MD5 or SHA-1), this document retains the usage of the term "name-based" in order to

maintain consistency with previously published documents and existing implementations.

The requirements for name-based UUIDs are as follows:

UUIDs generated at different times from the same name (using the same canonical format) in

the same namespace be equal.

UUIDs generated from two different names (same or differing canonical format) in the same

namespace should be different (with very high probability).

UUIDs generated from the same name (same or differing canonical format) in two different

namespaces should be different (with very high probability).

If two UUIDs that were generated from names (using the same canonical format) are equal,

then they were generated from the same name in the same namespace (with very high

probability).

A note on names:

The concept of name (and namespace) should be broadly construed and not limited to textual

names. A canonical sequence of octets is one that conforms to the specification for that name

form's canonical representation. A name can have many usual forms, only one of which can

be canonical. An implementer of new namespaces for UUIDs needs to reference the

specification for the canonical form of names in that space or define such a canonical form

for the namespace if it does not exist. For example, at the time of writing, Domain Name

System (DNS) has three conveyance formats: common (www.example.com),

presentation (www.example.com.), and wire format (3www7example3com0). Looking at

 Distinguished Names (DNs), allowed either text-based or binary DER-based

names as inputs. For Uniform Resource Locators (URLs) , one could provide a Fully

Qualified Domain Name (FQDN) with or without the protocol identifier www.example.com or

https://www.example.com. When it comes to Object Identifiers (OIDs) , one could

choose dot notation without the leading dot (2.999), choose to include the leading dot (.2.999),

or select one of the many formats from such as OID Internationalized Resource

Identifier (OID-IRI) (/Joint-ISO-ITU-T/Example). While most users may default to the common

format for DNS, FQDN format for a URL, text format for X.500, and dot notation without a

leading dot for OID, name-based UUID implementations generally allow arbitrary

•

MUST

•

•

•

[RFC9499]

[X500] [RFC4122]

[RFC1738]

[X660]

[X680]

SHOULD

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 28

input that will compute name-based UUIDs for any of the aforementioned example names

and others not defined here. Each name format within a namespace will output different

UUIDs. As such, the mechanisms or conventions used for allocating names and ensuring their

uniqueness within their namespaces are beyond the scope of this specification.

6.6. Namespace ID Usage and Allocation

This section details the namespace IDs for some potentially interesting namespaces such as those

for DNS , URLs , OIDs , and DNs .

Further, this section also details allocation, IANA registration, and other details pertinent to

Namespace IDs.

Items may be added to this registry using the Specification Required policy as per .

For designated experts, generally speaking, Namespace IDs are allocated as follows:

The first Namespace ID value, for DNS, was calculated from a time-based UUIDv1 and

"6ba7b810-9dad-11d1-80b4-00c04fd430c8", used as a starting point.

Subsequent Namespace ID values increment the least significant, rightmost bit of time_low

"6ba7b810" while freezing the rest of the UUID to "9dad-11d1-80b4-00c04fd430c8".

New Namespace ID values use this same logic and use a previously used

Namespace ID value.

Thus, "6ba7b815" is the next available time_low for a new Namespace ID value with the full

ID being "6ba7b815-9dad-11d1-80b4-00c04fd430c8".

The upper bound for time_low in this special use, Namespace ID values, is "ffffffff" or

"ffffffff-9dad-11d1-80b4-00c04fd430c8", which should be sufficient space for future

Namespace ID values.

[RFC9499] [RFC1738] [X660] [X500]

Namespace Namespace ID Value Name

Reference

Namespace ID

Reference

DNS 6ba7b810-9dad-11d1-80b4-00c04fd430c8 , RFC

9562

URL 6ba7b811-9dad-11d1-80b4-00c04fd430c8 , RFC

9562

OID 6ba7b812-9dad-11d1-80b4-00c04fd430c8 , RFC

9562

X500 6ba7b814-9dad-11d1-80b4-00c04fd430c8 , RFC

9562

Table 3: Namespace IDs

[RFC9499] [RFC4122]

[RFC1738] [RFC4122]

[X660] [RFC4122]

[X500] [RFC4122]

[RFC8126]

•

•

• MUST MUST NOT

•

•

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 29

Note that the Namespace ID value "6ba7b813-9dad-11d1-80b4-00c04fd430c8" and its usage are

not defined by this document or by ; thus, it be used as a Namespace ID

value.

New Namespace ID values be documented as per Section 7 if they are to be globally

available and fully interoperable. Implementations continue to use vendor-specific,

application-specific, and deployment-specific Namespace ID values; but know that

interoperability is not guaranteed. These custom Namespace ID values use the logic

above; instead, generating a UUIDv4 or UUIDv7 Namespace ID value is . If

collision probability (Section 6.7) and uniqueness (Section 6.8) of the final name-based UUID are

not a problem, an implementation also leverage UUIDv8 instead to create a custom,

application-specific Namespace ID value.

Implementations provide the ability to input a custom namespace to account for newly

registered IANA Namespace ID values outside of those listed in this section or custom,

application-specific Namespace ID values.

[RFC4122] SHOULD NOT

MUST

MAY

MUST NOT

RECOMMENDED

MAY

SHOULD

6.7. Collision Resistance

Implementations should weigh the consequences of UUID collisions within their application and

when deciding between UUID versions that use entropy (randomness) versus the other

components such as those in Sections 6.1 and 6.2. This is especially true for distributed node

collision resistance as defined by Section 6.4.

There are two example scenarios below that help illustrate the varying seriousness of a collision

within an application.

Low Impact:

A UUID collision generated a duplicate log entry, which results in incorrect statistics derived

from the data. Implementations that are not negatively affected by collisions may continue

with the entropy and uniqueness provided by UUIDs defined in this document.

High Impact:

A duplicate key causes an airplane to receive the wrong course, which puts people's lives at

risk. In this scenario, there is no margin for error. Collisions must be avoided: failure is

unacceptable. Applications dealing with this type of scenario must employ as much collision

resistance as possible within the given application context.

6.8. Global and Local Uniqueness

UUIDs created by this specification be used to provide local uniqueness guarantees. For

example, ensuring UUIDs created within a local application context are unique within a database

 be sufficient for some implementations where global uniqueness outside of the application

context, in other applications, or around the world is not required.

MAY

MAY

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 30

Although true global uniqueness is impossible to guarantee without a shared knowledge scheme,

a shared knowledge scheme is not required by a UUID to provide uniqueness for practical

implementation purposes. Implementations use a shared knowledge scheme, introduced in

Section 6.4, as they see fit to extend the uniqueness guaranteed by this specification.

MAY

6.9. Unguessability

Implementations utilize a cryptographically secure pseudorandom number generator

(CSPRNG) to provide values that are both difficult to predict ("unguessable") and have a low

likelihood of collision ("unique"). The exception is when a suitable CSPRNG is unavailable in the

execution environment. Take care to ensure the CSPRNG state is properly reseeded upon state

changes, such as process forks, to ensure proper CSPRNG operation. CSPRNG ensures the best of

Sections 6.7 and 8 are present in modern UUIDs.

Further advice on generating cryptographic-quality random numbers can be found in ,

, and .

SHOULD

[RFC4086]

[RFC8937] [RANDOM]

6.10. UUIDs That Do Not Identify the Host

This section describes how to generate a UUIDv1 or UUIDv6 value if an IEEE 802 address is not

available or its use is not desired.

Implementations leverage MAC address randomization techniques as an

alternative to the pseudorandom logic provided in this section.

Alternatively, implementations elect to obtain a 48-bit cryptographic-quality random

number as per Section 6.9 to use as the Node ID. After generating the 48-bit fully randomized

node value, implementations set the least significant bit of the first octet of the Node ID to

1. This bit is the unicast or multicast bit, which will never be set in IEEE 802 addresses obtained

from network cards. Hence, there can never be a conflict between UUIDs generated by machines

with and without network cards. An example of generating a randomized 48-bit node value and

the subsequent bit modification is detailed in Appendix A. For more information about IEEE 802

address and the unicast or multicast or local/global bits, please review .

For compatibility with earlier specifications, note that this document uses the unicast or

multicast bit instead of the arguably more correct local/global bit because MAC addresses with

the local/global bit set or not set are both possible in a network. This is not the case with the

unicast or multicast bit. One node cannot have a MAC address that multicasts to multiple nodes.

In addition, items such as the computer's name and the name of the operating system, while not

strictly speaking random, will help differentiate the results from those obtained by other

systems.

The exact algorithm to generate a Node ID using these data is system specific because both the

data available and the functions to obtain them are often very system specific. However, a

generic approach is to accumulate as many sources as possible into a buffer, use a message digest

(such as SHA-256 or SHA-512 defined by), take an arbitrary 6 bytes from the hash

value, and set the multicast bit as described above.

MAY [IEEE802.11bh]

MAY

MUST

[RFC9542]

[FIPS180-4]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 31

6.11. Sorting

UUIDv6 and UUIDv7 are designed so that implementations that require sorting (e.g., database

indexes) sort as opaque raw bytes without the need for parsing or introspection.

Time-ordered monotonic UUIDs benefit from greater database-index locality because the new

values are near each other in the index. As a result, objects are more easily clustered together for

better performance. The real-world differences in this approach of index locality versus random

data inserts can be one order of magnitude or more.

UUID formats created by this specification are intended to be lexicographically sortable while in

the textual representation.

UUIDs created by this specification are crafted with big-endian byte order (network byte order)

in mind. If little-endian style is required, UUIDv8 is available for custom UUID formats.

6.12. Opacity

As general guidance, avoiding parsing UUID values unnecessarily is recommended; instead, treat

UUIDs as opaquely as possible. Although application-specific concerns could, of course, require

some degree of introspection (e.g., to examine Sections 4.1 or 4.2 or perhaps the timestamp of a

UUID), the advice here is to avoid this or other parsing unless absolutely necessary. Applications

typically tend to be simpler, be more interoperable, and perform better when this advice is

followed.

6.13. DBMS and Database Considerations

For many applications, such as databases, storing UUIDs as text is unnecessarily verbose,

requiring 288 bits to represent 128-bit UUID values. Thus, where feasible, UUIDs be

stored within database applications as the underlying 128-bit binary value.

For other systems, UUIDs be stored in binary form or as text, as appropriate. The trade-offs

to both approaches are as follows:

Storing in binary form requires less space and may result in faster data access.

Storing as text requires more space but may require less translation if the resulting text form

is to be used after retrieval, which may make it simpler to implement.

DBMS vendors are encouraged to provide functionality to generate and store UUID formats

defined by this specification for use as identifiers or left parts of identifiers such as, but not

limited to, primary keys, surrogate keys for temporal databases, foreign keys included in

polymorphic relationships, and keys for key-value pairs in JSON columns and key-value

databases. Applications using a monolithic database may find using database-generated UUIDs

(as opposed to client-generated UUIDs) provides the best UUID monotonicity. In addition to

UUIDs, additional identifiers be used to ensure integrity and feedback.

SHOULD

MAY

•

•

MAY

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 32

Designers of database schema are cautioned against using name-based UUIDs (see Sections 5.3

and 5.5) as primary keys in tables. A common issue observed in database schema design is the

assumption that a particular value will never change, which later turns out to be an incorrect

assumption. Postal codes, license or other identification numbers, and numerous other such

identifiers seem unique and unchanging at a given point time -- only later to have edge cases

where they need to change. The subsequent change of the identifier, used as a "name" input for

name-based UUIDs, can invalidate a given database structure. In such scenarios, it is observed

that using any non-name-based UUID version would have resulted in the field in question being

placed somewhere that would have been easier to adapt to such changes (primary key excluded

from this statement). The general advice is to avoid name-based UUID natural keys and, instead,

to utilize time-based UUID surrogate keys based on the aforementioned problems detailed in this

section.

7. IANA Considerations

All references to in IANA registries (outside of those created by this document) have

been replaced with references to this document, including the IANA URN namespace registration

 for UUID. References to have been updated to refer

to Section 4 of this document.

Finally, IANA should track UUID Subtypes and Special Case "Namespace IDs Values" as specified

in Sections 7.1 and 7.2 at the following location: .

When evaluating requests, the designated expert should consider community feedback, how

well-defined the reference specification is, and this specification's requirements. Vendor-specific,

application-specific, and deployment-specific values are unable to be registered. Specification

documents should be published in a stable, freely available manner (ideally, located with a URL)

but need not be standards. The designated expert will either approve or deny the registration

request and communicate this decision to IANA. Denials should include an explanation and, if

applicable, suggestions as to how to make the request successful.

[RFC4122]

[URNNamespaces] Section 4.1.2 of [RFC4122]

<https://www.iana.org/assignments/uuid>

7.1. IANA UUID Subtype Registry and Registration

This specification defines the "UUID Subtypes" registry for common widely used UUID standards.

Name ID Subtype Variant Reference

Gregorian Time-based 1 version OSF DCE / IETF , RFC 9562

DCE Security 2 version OSF DCE / IETF ,

MD5 Name-based 3 version OSF DCE / IETF , RFC 9562

Random 4 version OSF DCE / IETF , RFC 9562

SHA-1 Name-based 5 version OSF DCE / IETF , RFC 9562

[RFC4122]

[C309] [C311]

[RFC4122]

[RFC4122]

[RFC4122]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 33

https://rfc-editor.org/rfc/rfc4122#section-4.1.2
https://www.iana.org/assignments/uuid

This table may be extended by Standards Action as per .

For designated experts:

The minimum and maximum "ID" value for the subtype "version" within the "OSF DCE /

IETF" variant is 0 through 15. The versions within Table 1 described as "Reserved for future

definition" or "unused" are omitted from this IANA registry until properly defined.

The "Subtype" column is free-form text. However, at the time of publication, "version" and

"family" are the only known UUID subtypes. The "family" subtype is part of the "Apollo NCS"

variant space (both are outside the scope of this specification). The Microsoft variant may

have subtyping mechanisms defined; however, they are unknown and outside of the scope

of this specification. Similarly, the final "Reserved for future definition" variant may

introduce new subtyping logic at a future date. Subtype IDs are permitted to overlap. That is,

an ID of "1" may exist in multiple variant spaces.

The "Variant" column is free-form text. However, it is likely that one of four values will be

included: the first three are "OSF DCE / IETF", "Apollo NCS", and "Microsoft", and the final

variant value belongs to the "Reserved for future definition" variant and may introduce a

new name at a future date.

Name ID Subtype Variant Reference

Reordered Gregorian Time-based 6 version OSF DCE / IETF RFC 9562

Unix Time-based 7 version OSF DCE / IETF RFC 9562

Custom 8 version OSF DCE / IETF RFC 9562

Table 4: IANA UUID Subtypes

[RFC8126]

•

•

•

7.2. IANA UUID Namespace ID Registry and Registration

This specification defines the "UUID Namespace IDs" registry for common, widely used

Namespace ID values.

The full details of this registration, including information for designated experts, can be found in

Section 6.6.

8. Security Considerations

Implementations assume that UUIDs are hard to guess. For example, they

 be used as security capabilities (identifiers whose mere possession grants access). Discovery

of predictability in a random number source will result in a vulnerability.

Implementations assume that it is easy to determine if a UUID has been slightly

modified in order to redirect a reference to another object. Humans do not have the ability to

easily check the integrity of a UUID by simply glancing at it.

SHOULD NOT MUST

NOT

MUST NOT

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 34

9. References

MAC addresses pose inherent security risks around privacy and be used within a

UUID. Instead CSPRNG data be selected from a source with sufficient entropy to ensure

guaranteed uniqueness among UUID generation. See Sections 6.9 and 6.10 for more information.

Timestamps embedded in the UUID do pose a very small attack surface. The timestamp in

conjunction with an embedded counter does signal the order of creation for a given UUID and its

corresponding data but does not define anything about the data itself or the application as a

whole. If UUIDs are required for use with any security operation within an application context in

any shape or form, then UUIDv4 (Section 5.4) be utilized.

See for MD5 security considerations and for SHA-1 security considerations.

SHOULD NOT

SHOULD

SHOULD

[RFC6151] [RFC6194]

[C309]

[C311]

[FIPS180-4]

[FIPS202]

[RFC2119]

[RFC8141]

[RFC8174]

9.1. Normative References

, ,

, , August 1994,

.

, ,

, August 1997,

.

,

, , , August 2015,

.

,

, ,

, August 2015,

.

, , ,

, , March 1997,

.

 and , , ,

, April 2017, .

, ,

, , , May 2017,

.

X/Open Company Limited "X/Open DCE: Remote Procedure Call" ISBN

1-85912-041-5 Open CAE Specification C309 <https://

pubs.opengroup.org/onlinepubs/9696999099/toc.pdf>

The Open Group "DCE 1.1: Authentication and Security Services" Open Group

CAE Specification C311 <https://pubs.opengroup.org/onlinepubs/

9696989899/toc.pdf>

National Institute of Standards and Technology (NIST) "Secure Hash Standard

(SHS)" FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>

National Institute of Standards and Technology (NIST) "SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions" FIPS PUB 202 DOI

10.6028/NIST.FIPS.202 <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.202.pdf>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Saint-Andre, P. J. Klensin "Uniform Resource Names (URNs)" RFC 8141 DOI

10.17487/RFC8141 <https://www.rfc-editor.org/info/rfc8141>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 35

https://pubs.opengroup.org/onlinepubs/9696999099/toc.pdf
https://pubs.opengroup.org/onlinepubs/9696999099/toc.pdf
https://pubs.opengroup.org/onlinepubs/9696989899/toc.pdf
https://pubs.opengroup.org/onlinepubs/9696989899/toc.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[X667] ,

, , , September

2004.

ITU-T "Information technology - Open Systems Interconnection - Procedures for

the operation of OSI Registration Authorities: Generation and registration of

Universally Unique Identifiers (UUIDs) and their use as ASN.1 object identifier

components" ISO/IEC 9834-8:2004 ITU-T Recommendation X.667

[COMBGUID]

[CUID]

[Elasticflake]

[Err1957]

[Err3546]

[Err4975]

[Err4976]

[Err5560]

[Flake]

[FlakeID]

[IBM_NCS]

[IEEE754]

[IEEE802.11bh]

9.2. Informative References

, ,

December 2020, .

,

, October 2020, .

,

, , January 2015,

.

, , ,

.

, , ,

.

, , ,

.

, , ,

.

, , ,

.

, ,

, February 2017, .

, , April 2020,

.

, , March 2023,

.

, , ,

, July 2019,

.

,

"Creating sequential GUIDs in C# for MSSQL or PostgreSql" commit 2759820

<https://github.com/richardtallent/RT.Comb>

"Collision-resistant ids optimized for horizontal scaling and performance."

commit 215b27b <https://github.com/ericelliott/cuid>

Pearcy, P. "Sequential UUID / Flake ID generator pulled out of elasticsearch

common" commit dd71c21 <https://github.com/ppearcy/

elasticflake>

RFC Errata Erratum ID 1957 RFC 4122 <https://www.rfc-editor.org/errata/

eid1957>

RFC Errata Erratum ID 3546 RFC 4122 <https://www.rfc-editor.org/errata/

eid3546>

RFC Errata Erratum ID 4975 RFC 4122 <https://www.rfc-editor.org/errata/

eid4975>

RFC Errata Erratum ID 4976 RFC 4122 <https://www.rfc-editor.org/errata/

eid4976>

RFC Errata Erratum ID 5560 RFC 4122 <https://www.rfc-editor.org/errata/

eid5560>

Boundary "Flake: A decentralized, k-ordered id generation service in Erlang"

commit 15c933a <https://github.com/boundary/flake>

"Flake ID Generator" commit fcd6a2f <https://github.com/T-PWK/

flake-idgen>

IBM "uuid_gen Command (NCS)" <https://www.ibm.com/docs/en/

aix/7.1?topic=u-uuid-gen-command-ncs>

IEEE "IEEE Standard for Floating-Point Arithmetic." IEEE Std 754-2019 DOI

10.1109/IEEESTD.2019.8766229 <https://standards.ieee.org/ieee/

754/6210/>

IEEE "IEEE Draft Standard for Information technology--Telecommunications

and information exchange between systems Local and metropolitan area

networks--Specific requirements - Part 11: Wireless LAN Medium Access Control

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 36

https://github.com/richardtallent/RT.Comb
https://github.com/ericelliott/cuid
https://github.com/ppearcy/elasticflake
https://github.com/ppearcy/elasticflake
https://www.rfc-editor.org/errata/eid1957
https://www.rfc-editor.org/errata/eid1957
https://www.rfc-editor.org/errata/eid3546
https://www.rfc-editor.org/errata/eid3546
https://www.rfc-editor.org/errata/eid4975
https://www.rfc-editor.org/errata/eid4975
https://www.rfc-editor.org/errata/eid4976
https://www.rfc-editor.org/errata/eid4976
https://www.rfc-editor.org/errata/eid5560
https://www.rfc-editor.org/errata/eid5560
https://github.com/boundary/flake
https://github.com/T-PWK/flake-idgen
https://github.com/T-PWK/flake-idgen
https://www.ibm.com/docs/en/aix/7.1?topic=u-uuid-gen-command-ncs
https://www.ibm.com/docs/en/aix/7.1?topic=u-uuid-gen-command-ncs
https://standards.ieee.org/ieee/754/6210/
https://standards.ieee.org/ieee/754/6210/

[KSUID]

[LexicalUUID]

[Microsoft]

[MS_COM_GUID]

[ObjectID]

[orderedUuid]

[pushID]

[Python]

[RANDOM]

[RFC1321]

[RFC1738]

[RFC4086]

[RFC4122]

, , March

2023, .

, , , July 2020,

.

, , , November 2012,

.

, , April 2023,

.

,

, September 2022,

.

, ,

.

, , January 2020,

.

, , February 2015,

.

, ,

.

, , June

2023, .

, , ,

, April 1992, .

, , and ,

, , , December 1994,

.

, , and ,

, , , , June 2005,

.

, , and ,

, , , July 2005,

.

(MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for

Extremely High Throughput (EHT)" Electronic ISBN 978-1-5044-9520-2

<https://standards.ieee.org/ieee/802.11bh/10525/>

Segment "K-Sortable Globally Unique IDs" commit bf376a7 <https://

github.com/segmentio/ksuid>

Twitter "Cassie" commit f6da4e0 <https://github.com/twitter-

archive/cassie>

Microsoft "2.3.4.3 GUID - Curly Braced String Representation"

<https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/

222af2d3-5c00-4899-bc87-ed4c6515e80d>

Chen, R. "Why does COM express GUIDs in a mix of big-endian and little-

endian? Why can't it just pick a side and stick with it?" <https://

devblogs.microsoft.com/oldnewthing/20220928-00/?p=107221>

MongoDB "ObjectId" <https://docs.mongodb.com/manual/reference/method/

ObjectId/>

Cabrera, I. B. "Laravel: The mysterious "Ordered UUID"" <https://

itnext.io/laravel-the-mysterious-ordered-uuid-29e7500b4f8>

Lehenbauer, M. "The 2^120 Ways to Ensure Unique Identifiers"

<https://firebase.googleblog.com/2015/02/the-2120-ways-to-ensure-

unique_68.html>

Python "uuid - UUID objects according to RFC 4122" <https://docs.python.org/3/

library/uuid.html>

Occil, P. "Random Number Generator Recommendations for Applications"

<https://peteroupc.github.io/random.html>

Rivest, R. "The MD5 Message-Digest Algorithm" RFC 1321 DOI 10.17487/

RFC1321 <https://www.rfc-editor.org/info/rfc1321>

Berners-Lee, T. Masinter, L. M. McCahill "Uniform Resource Locators

(URL)" RFC 1738 DOI 10.17487/RFC1738 <https://www.rfc-

editor.org/info/rfc1738>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for

Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://

www.rfc-editor.org/info/rfc4086>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN

Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-

editor.org/info/rfc4122>

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 37

https://standards.ieee.org/ieee/802.11bh/10525/
https://github.com/segmentio/ksuid
https://github.com/segmentio/ksuid
https://github.com/twitter-archive/cassie
https://github.com/twitter-archive/cassie
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/222af2d3-5c00-4899-bc87-ed4c6515e80d
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/222af2d3-5c00-4899-bc87-ed4c6515e80d
https://devblogs.microsoft.com/oldnewthing/20220928-00/?p=107221
https://devblogs.microsoft.com/oldnewthing/20220928-00/?p=107221
https://docs.mongodb.com/manual/reference/method/ObjectId/
https://docs.mongodb.com/manual/reference/method/ObjectId/
https://itnext.io/laravel-the-mysterious-ordered-uuid-29e7500b4f8
https://itnext.io/laravel-the-mysterious-ordered-uuid-29e7500b4f8
https://firebase.googleblog.com/2015/02/the-2120-ways-to-ensure-unique_68.html
https://firebase.googleblog.com/2015/02/the-2120-ways-to-ensure-unique_68.html
https://docs.python.org/3/library/uuid.html
https://docs.python.org/3/library/uuid.html
https://peteroupc.github.io/random.html
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122

[RFC5234]

[RFC6151]

[RFC6194]

[RFC8126]

[RFC8937]

[RFC9499]

[RFC9542]

[ShardingID]

[SID]

[Snowflake]

[Sonyflake]

[ULID]

[URNNamespaces]

[X500]

 and ,

, , , , January 2008,

.

 and ,

, , , March

2011, .

, , , and ,

, , ,

March 2011, .

, , and ,

, , , , June

2017, .

, , , , and ,

, , , October

2020, .

 and , , , ,

, March 2024, .

, , and ,

, , ,

, April 2024, .

, , December 2012,

.

, , June 2019,

.

,

, , May 2014,

.

, ,

, August 2020, .

, ,

May 2019, .

, ,

.

,

, ,

, October 2019.

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Turner, S. L. Chen "Updated Security Considerations for the MD5 Message-

Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Polk, T. Chen, L. Turner, S. P. Hoffman "Security Considerations for the

SHA-0 and SHA-1 Message-Digest Algorithms" RFC 6194 DOI 10.17487/RFC6194

<https://www.rfc-editor.org/info/rfc6194>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Cremers, C. Garratt, L. Smyshlyaev, S. Sullivan, N. C. Wood "Randomness

Improvements for Security Protocols" RFC 8937 DOI 10.17487/RFC8937

<https://www.rfc-editor.org/info/rfc8937>

Hoffman, P. K. Fujiwara "DNS Terminology" BCP 219 RFC 9499 DOI

10.17487/RFC9499 <https://www.rfc-editor.org/info/rfc9499>

Eastlake 3rd, D. Abley, J. Y. Li "IANA Considerations and IETF Protocol and

Documentation Usage for IEEE 802 Parameters" BCP 141 RFC 9542 DOI

10.17487/RFC9542 <https://www.rfc-editor.org/info/rfc9542>

Instagram Engineering "Sharding & IDs at Instagram" <https://

instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c>

"sid : generate sortable identifiers" Commit 660e947 <https://

github.com/chilts/sid>

Twitter "Snowflake is a network service for generating unique ID numbers at

high scale with some simple guarantees." commit ec40836 <https://

github.com/twitter-archive/snowflake>

Sony "A distributed unique ID generator inspired by Twitter's Snowflake"

commit 848d664 <https://github.com/sony/sonyflake>

"Universally Unique Lexicographically Sortable Identifier" Commit d0c7170

<https://github.com/ulid/spec>

IANA "Uniform Resource Names (URN) Namespaces" <https://

www.iana.org/assignments/urn-namespaces/>

ITU-T "Information technology - Open Systems Interconnection - The Directory:

Overview of concepts, models and services" ISO/IEC 9594-1 ITU-T

Recommendation X.500

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 38

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6194
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8937
https://www.rfc-editor.org/info/rfc9499
https://www.rfc-editor.org/info/rfc9542
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://github.com/chilts/sid
https://github.com/chilts/sid
https://github.com/twitter-archive/snowflake
https://github.com/twitter-archive/snowflake
https://github.com/sony/sonyflake
https://github.com/ulid/spec
https://www.iana.org/assignments/urn-namespaces/
https://www.iana.org/assignments/urn-namespaces/

[X660]

[X680]

[XID]

,

, ,

, July 2011.

,

, , , February

2021.

, , October 2020,

.

ITU-T "Information technology - Procedures for the operation of object

identifier registration authorities: General procedures and top arcs of the

international object identifier tree" ISO/IEC 9834-1 ITU-T Recommendation X.

660

ITU-T "Information Technology - Abstract Syntax Notation One (ASN.1) & ASN.1

encoding rules" ISO/IEC 8824-1:2021 ITU-T Recommendation X.680

"Globally Unique ID Generator" commit efa678f <https://

github.com/rs/xid>

Appendix A. Test Vectors

Both UUIDv1 and UUIDv6 test vectors utilize the same 60-bit timestamp: 0x1EC9414C232AB00

(138648505420000000) Tuesday, February 22, 2022 2:22:22.000000 PM GMT-05:00.

Both UUIDv1 and UUIDv6 utilize the same values in clock_seq and node; all of which have been

generated with random data. For the randomized node, the least significant bit of the first octet is

set to a value of 1 as per Section 6.10. Thus, the starting value 0x9E6BDECED846 was changed to

0x9F6BDECED846.

The pseudocode used for converting from a 64-bit Unix timestamp to a 100 ns Gregorian

timestamp value has been left in the document for reference purposes.

Figure 15: Test Vector Timestamp Pseudocode

Gregorian-to-Unix Offset:
The number of 100 ns intervals between the
UUID Epoch 1582-10-15 00:00:00
and the Unix Epoch 1970-01-01 00:00:00
Greg_Unix_offset = 0x01b21dd213814000 or 122192928000000000

Unix 64-bit Nanosecond Timestamp:
Unix NS: Tuesday, February 22, 2022 2:22:22 PM GMT-05:00
Unix_64_bit_ns = 0x16D6320C3D4DCC00 or 1645557742000000000

Unix Nanosecond precision to Gregorian 100-nanosecond intervals
Greg_100_ns = (Unix_64_bit_ns/100)+Greg_Unix_offset

Work:
Greg_100_ns = (1645557742000000000/100)+122192928000000000
Unix_64_bit_ns = (138648505420000000-122192928000000000)*100

Final:
Greg_100_ns = 0x1EC9414C232AB00 or 138648505420000000

A.1. Example of a UUIDv1 Value

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 39

https://github.com/rs/xid
https://github.com/rs/xid

Figure 16: UUIDv1 Example Test Vector

field bits value

time_low 32 0xC232AB00
time_mid 16 0x9414
ver 4 0x1
time_high 12 0x1EC
var 2 0b10
clock_seq 14 0b11, 0x3C8
node 48 0x9F6BDECED846

total 128

final: C232AB00-9414-11EC-B3C8-9F6BDECED846

A.2. Example of a UUIDv3 Value

The MD5 computation from is detailed in Figure 17 using the DNS Namespace ID value and the

Name "www.example.com". The field mapping and all values are illustrated in Figure 18. Finally,

to further illustrate the bit swapping for version and variant, see Figure 19.

Figure 17: UUIDv3 Example MD5

Namespace (DNS): 6ba7b810-9dad-11d1-80b4-00c04fd430c8
Name: www.example.com
--
MD5: 5df418813aed051548a72f4a814cf09e

Figure 18: UUIDv3 Example Test Vector

field bits value

md5_high 48 0x5df418813aed
ver 4 0x3
md5_mid 12 0x515
var 2 0b10
md5_low 62 0b00, 0x8a72f4a814cf09e

total 128

final: 5df41881-3aed-3515-88a7-2f4a814cf09e

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 40

Figure 19: UUIDv3 Example Ver/Var Bit Swaps

MD5 hex and dash: 5df41881-3aed-0515-48a7-2f4a814cf09e
Ver and Var Overwrite: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
Final: 5df41881-3aed-3515-88a7-2f4a814cf09e

A.3. Example of a UUIDv4 Value

This UUIDv4 example was created by generating 16 bytes of random data resulting in the

hexadecimal value of 919108F752D133205BACF847DB4148A8. This is then used to fill out the

fields as shown in Figure 20.

Finally, to further illustrate the bit swapping for version and variant, see Figure 21.

Figure 20: UUIDv4 Example Test Vector

field bits value

random_a 48 0x919108f752d1
ver 4 0x4
random_b 12 0x320
var 2 0b10
random_c 62 0b01, 0xbacf847db4148a8

total 128

final: 919108f7-52d1-4320-9bac-f847db4148a8

Figure 21: UUIDv4 Example Ver/Var Bit Swaps

Random hex: 919108f752d133205bacf847db4148a8
Random hex and dash: 919108f7-52d1-3320-5bac-f847db4148a8
Ver and Var Overwrite: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
Final: 919108f7-52d1-4320-9bac-f847db4148a8

A.4. Example of a UUIDv5 Value

The SHA-1 computation form is detailed in Figure 22, using the DNS Namespace ID value and the

Name "www.example.com". The field mapping and all values are illustrated in Figure 23. Finally,

to further illustrate the bit swapping for version and variant and the unused/discarded part of

the SHA-1 value, see Figure 24.

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 41

Figure 22: UUIDv5 Example SHA-1

Namespace (DNS): 6ba7b810-9dad-11d1-80b4-00c04fd430c8
Name: www.example.com
--
SHA-1: 2ed6657de927468b55e12665a8aea6a22dee3e35

Figure 23: UUIDv5 Example Test Vector

field bits value

sha1_high 48 0x2ed6657de927
ver 4 0x5
sha1_mid 12 0x68b
var 2 0b10
sha1_low 62 0b01, 0x5e12665a8aea6a2

total 128

final: 2ed6657d-e927-568b-95e1-2665a8aea6a2

Figure 24: UUIDv5 Example Ver/Var Bit Swaps and Discarded SHA-1 Segment

SHA-1 hex and dash: 2ed6657d-e927-468b-55e1-2665a8aea6a2-2dee3e35
Ver and Var Overwrite: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
Final: 2ed6657d-e927-568b-95e1-2665a8aea6a2
Discarded: -2dee3e35

A.5. Example of a UUIDv6 Value

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 42

Figure 25: UUIDv6 Example Test Vector

field bits value

time_high 32 0x1EC9414C
time_mid 16 0x232A
ver 4 0x6
time_high 12 0xB00
var 2 0b10
clock_seq 14 0b11, 0x3C8
node 48 0x9F6BDECED846

total 128

final: 1EC9414C-232A-6B00-B3C8-9F6BDECED846

A.6. Example of a UUIDv7 Value

This example UUIDv7 test vector utilizes a well-known Unix Epoch timestamp with millisecond

precision to fill the first 48 bits.

rand_a and rand_b are filled with random data.

The timestamp is Tuesday, February 22, 2022 2:22:22.00 PM GMT-05:00, represented as

0x017F22E279B0 or 1645557742000.

Figure 26: UUIDv7 Example Test Vector

field bits value

unix_ts_ms 48 0x017F22E279B0
ver 4 0x7
rand_a 12 0xCC3
var 2 0b10
rand_b 62 0b01, 0x8C4DC0C0C07398F

total 128

final: 017F22E2-79B0-7CC3-98C4-DC0C0C07398F

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 43

Appendix B. Illustrative Examples

The following sections contain illustrative examples that serve to show how one may use UUIDv8

(Section 5.8) for custom and/or experimental application-based logic. The examples below have

not been through the same rigorous testing, prototyping, and feedback loop that other algorithms

in this document have undergone. The authors encourage implementers to create their own

UUIDv8 algorithm rather than use the items defined in this section.

B.1. Example of a UUIDv8 Value (Time-Based)

This example UUIDv8 test vector utilizes a well-known 64-bit Unix Epoch timestamp with 10 ns

precision, truncated to the least significant, rightmost bits to fill the first 60 bits of custom_a and

custom_b, while setting the version bits between these two segments to the version value of 8.

The variant bits are set; and the final segment, custom_c, is filled with random data.

Timestamp is Tuesday, February 22, 2022 2:22:22.000000 PM GMT-05:00, represented as

0x2489E9AD2EE2E00 or 164555774200000000 (10 ns-steps).

Figure 27: UUIDv8 Example Time-Based Illustrative Example

field bits value

custom_a 48 0x2489E9AD2EE2
ver 4 0x8
custom_b 12 0xE00
var 2 0b10
custom_c 62 0b00, 0xEC932D5F69181C0

total 128

final: 2489E9AD-2EE2-8E00-8EC9-32D5F69181C0

B.2. Example of a UUIDv8 Value (Name-Based)

As per Section 5.5, name-based UUIDs that want to use modern hashing algorithms be

created within the UUIDv8 space. These leverage newer hashing algorithms such as SHA-256

or SHA-512 (as defined by), SHA-3 or SHAKE (as defined by), or even

algorithms that have not been defined yet.

A SHA-256 version of the SHA-1 computation in Appendix A.4 is detailed in Figure 28 as an

illustrative example detailing how this can be achieved. The creation of the name-based UUIDv8

value in this section follows the same logic defined in Section 5.5 with the difference being

SHA-256 in place of SHA-1.

MUST

MAY

[FIPS180-4] [FIPS202]

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 44

The field mapping and all values are illustrated in Figure 29. Finally, to further illustrate the bit

swapping for version and variant and the unused/discarded part of the SHA-256 value, see

Figure 30. An important note for secure hashing algorithms that produce outputs of an arbitrary

size, such as those found in SHAKE, is that the output hash be 128 bits or larger.

Examining Figure 30:

Line A details the full SHA-256 as a hexadecimal value with the dashes inserted.

Line B details the version and variant hexadecimal positions, which must be overwritten.

Line C details the final value after the ver and var have been overwritten.

Line D details the discarded leftover values from the original SHA-256 computation.

MUST

Figure 28: UUIDv8 Example SHA256

Namespace (DNS): 6ba7b810-9dad-11d1-80b4-00c04fd430c8
Name: www.example.com
--
SHA-256:
5c146b143c524afd938a375d0df1fbf6fe12a66b645f72f6158759387e51f3c8

Figure 29: UUIDv8 Example Name-Based SHA-256 Illustrative Example

field bits value

custom_a 48 0x5c146b143c52
ver 4 0x8
custom_b 12 0xafd
var 2 0b10
custom_c 62 0b00, 0x38a375d0df1fbf6

total 128

final: 5c146b14-3c52-8afd-938a-375d0df1fbf6

Figure 30: UUIDv8 Example Ver/Var Bit Swaps and Discarded SHA-256 Segment

A: 5c146b14-3c52-4afd-938a-375d0df1fbf6-fe12a66b645f72f6158759387e51f3c8
B: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
C: 5c146b14-3c52-8afd-938a-375d0df1fbf6
D: -fe12a66b645f72f6158759387e51f3c8

•

•

•

•

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 45

Acknowledgements

The authors gratefully acknowledge the contributions of , ,

, , , , , ,

, , , , , ,

and .

As well as all of those in the IETF community and on GitHub to who contributed to the

discussions that resulted in this document.

This document draws heavily on the OSF DCE specification (Appendix A of) for UUIDs.

 provided helpful comments.

We are also grateful to the careful reading and bit-twiddling of ,

, and . was also invaluable in achieving coordination

with ISO/IEC.

Rich Salz Michael Mealling Ben

Campbell Ben Ramsey Fabio Lima Gonzalo Salgueiro Martin Thomson Murray S. Kucherawy

Rick van Rein Rob Wilton Sean Leonard Theodore Y. Ts'o Robert Kieffer Sergey Prokhorenko

LiosK

[C309] Ted

Ts'o

Ralf S. Engelschall John

Larmouth Paul Thorpe Professor Larmouth

Authors' Addresses

Kyzer R. Davis

Cisco Systems

 kydavis@cisco.com Email:

Brad G. Peabody

Uncloud

 brad@peabody.io Email:

Paul J. Leach

University of Washington

 pjl7@uw.edu Email:

RFC 9562 UUIDs May 2024

Davis, et al. Standards Track Page 46

mailto:kydavis@cisco.com
mailto:brad@peabody.io
mailto:pjl7@uw.edu

	RFC 9562
	Universally Unique IDentifiers (UUIDs)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Motivation
	2.1. Update Motivation

	3. Terminology
	3.1. Requirements Language
	3.2. Abbreviations

	4. UUID Format
	4.1. Variant Field
	4.2. Version Field

	5. UUID Layouts
	5.1. UUID Version 1
	5.2. UUID Version 2
	5.3. UUID Version 3
	5.4. UUID Version 4
	5.5. UUID Version 5
	5.6. UUID Version 6
	5.7. UUID Version 7
	5.8. UUID Version 8
	5.9. Nil UUID
	5.10. Max UUID

	6. UUID Best Practices
	6.1. Timestamp Considerations
	6.2. Monotonicity and Counters
	6.3. UUID Generator States
	6.4. Distributed UUID Generation
	6.5. Name-Based UUID Generation
	6.6. Namespace ID Usage and Allocation
	6.7. Collision Resistance
	6.8. Global and Local Uniqueness
	6.9. Unguessability
	6.10. UUIDs That Do Not Identify the Host
	6.11. Sorting
	6.12. Opacity
	6.13. DBMS and Database Considerations

	7. IANA Considerations
	7.1. IANA UUID Subtype Registry and Registration
	7.2. IANA UUID Namespace ID Registry and Registration

	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Test Vectors
	A.1. Example of a UUIDv1 Value
	A.2. Example of a UUIDv3 Value
	A.3. Example of a UUIDv4 Value
	A.4. Example of a UUIDv5 Value
	A.5. Example of a UUIDv6 Value
	A.6. Example of a UUIDv7 Value

	Appendix B. Illustrative Examples
	B.1. Example of a UUIDv8 Value (Time-Based)
	B.2. Example of a UUIDv8 Value (Name-Based)

	Acknowledgements
	Authors' Addresses

 Universally Unique IDentifiers (UUIDs)

 Cisco Systems

 kydavis@cisco.com

 Uncloud

 brad@peabody.io

 University of Washington

 pjl7@uw.edu

 art
 uuidrev
 uuid

 This specification defines UUIDs (Universally Unique IDentifiers) --
 also known as GUIDs (Globally Unique IDentifiers) -- and a Uniform
 Resource Name namespace for UUIDs. A UUID is 128 bits long and is intended to
 guarantee uniqueness across space and time. UUIDs were originally used
 in the Apollo Network Computing System (NCS), later in the Open Software
 Foundation's (OSF's) Distributed Computing Environment (DCE), and then
 in Microsoft Windows platforms.
 This specification is derived from the OSF DCE specification with the
 kind permission of the OSF (now known as "The Open Group"). Information
 from earlier versions of the OSF DCE specification have been incorporated
 into this document. This document obsoletes RFC 4122.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Motivation

 . Update Motivation

 . Terminology

 . Requirements Language

 . Abbreviations

 . UUID Format

 . Variant Field

 . Version Field

 . UUID Layouts

 . UUID Version 1

 . UUID Version 2

 . UUID Version 3

 . UUID Version 4

 . UUID Version 5

 . UUID Version 6

 . UUID Version 7

 . UUID Version 8

 . Nil UUID

 . Max UUID

 . UUID Best Practices

 . Timestamp Considerations

 . Monotonicity and Counters

 . UUID Generator States

 . Distributed UUID Generation

 . Name-Based UUID Generation

 . Namespace ID Usage and Allocation

 . Collision Resistance

 . Global and Local Uniqueness

 . Unguessability

 . UUIDs That Do Not Identify the Host

 . Sorting

 . Opacity

 . DBMS and Database Considerations

 . IANA Considerations

 . IANA UUID Subtype Registry and Registration

 . IANA UUID Namespace ID Registry and Registration

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Test Vectors

 . Example of a UUIDv1 Value

 . Example of a UUIDv3 Value

 . Example of a UUIDv4 Value

 . Example of a UUIDv5 Value

 . Example of a UUIDv6 Value

 . Example of a UUIDv7 Value

 . Illustrative Examples

 . Example of a UUIDv8 Value (Time-Based)

 . Example of a UUIDv8 Value (Name-Based)

 Acknowledgements

 Authors' Addresses

 Introduction
 This specification defines a Uniform Resource Name namespace for
 Universally Unique IDentifiers (UUIDs), also known as Globally
 Unique IDentifiers (GUIDs). A UUID is 128 bits long and
 requires no central registration process.
 The use of UUIDs is extremely pervasive in computing. They comprise
 the core identifier infrastructure for many operating systems such as
 Microsoft Windows and applications such as the Mozilla Web browser;
 in many cases, they can become exposed in many non-standard ways.
 This specification attempts to standardize that practice as openly as
 possible and in a way that attempts to benefit the entire Internet. The information
 here is meant to be a concise guide for those wishing to implement
 services using UUIDs either in combination with URNs or otherwise.
 There is an ITU-T Recommendation and an ISO/IEC Standard that are derived from . Both
 sets of specifications have been aligned and are fully technically
 compatible. Nothing in this document should be construed to override
 the DCE standards that defined UUIDs.

 Motivation
 One of the main reasons for using UUIDs is that no centralized
 authority is required to administer them (although two formats may
 leverage optional IEEE 802 Node IDs, others do not). As a
 result, generation on demand can be completely automated and used for a
 variety of purposes. The UUID generation algorithm described here
 supports very high allocation rates of 10 million per second per machine
 or more, if necessary, so that they could even be used as transaction
 IDs.
 UUIDs are of a fixed size (128 bits), which is reasonably small
 compared to other alternatives. This lends itself well to sorting,
 ordering, and hashing of all sorts; storing in databases; simple
 allocation; and ease of programming in general.
 Since UUIDs are unique and persistent, they make excellent URNs.
 The unique ability to generate a new UUID without a
 registration process allows for UUIDs to be one of the URNs with the
 lowest minting cost.

 Update Motivation
 Many things have changed in the time since UUIDs were originally
 created. Modern applications have a need to create and utilize UUIDs
 as the primary identifier for a variety of different items in complex
 computational systems, including but not limited to database keys,
 file names, machine or system names, and identifiers for event-driven
 transactions.
 One area in which UUIDs have gained popularity is database keys.
 This stems from the increasingly distributed nature of modern
 applications. In such cases, "auto-increment" schemes that are often
 used by databases do not work well: the effort required to
 coordinate sequential numeric identifiers across a network can easily
 become a burden. The fact that UUIDs can be used to create unique,
 reasonably short values in distributed systems without requiring
 coordination makes them a good alternative, but UUID versions 1-5,
 which were originally defined by , lack
 certain other desirable characteristics, such as:

	 UUID versions that are not time ordered, such as UUIDv4 (described in
), have poor database-index locality. This
	 means that new values created in succession are not close to each
	 other in the index; thus, they require inserts to be performed at
	 random locations. The resulting negative performance effects on the
	 common structures used for this (B-tree and its variants) can be
	 dramatic.
 The 100-nanosecond Gregorian Epoch used in UUIDv1 timestamps (described in
) is uncommon and difficult to
 represent accurately using a standard number format such as that
 described in .
 Introspection/parsing is required to order by time sequence, as
 opposed to being able to perform a simple byte-by-byte comparison.

 Privacy and network security issues arise from using a Media Access Control (MAC)
 address in the node field of UUIDv1. Exposed MAC addresses
 can be used as an attack surface to locate network interfaces and
 reveal various other information about such machines (minimally, the
 manufacturer and, potentially, other details). Additionally, with the
 advent of virtual machines and containers, uniqueness of the MAC address is
 no longer guaranteed.
 Many of the implementation details specified in involved trade-offs that are neither possible to
 specify for all applications nor necessary to produce interoperable
 implementations.

 did not distinguish between the
 requirements for generating a UUID and those for simply storing one,
 although they are often different.

 Due to the aforementioned issues, many widely distributed database
 applications and large application vendors have sought to solve the
 problem of creating a better time-based, sortable unique identifier
 for use as a database key. This has led to numerous implementations
 over the past 10+ years solving the same problem in slightly different
 ways.
 While preparing this specification, the following 16 different
 implementations were analyzed for trends in total ID length, bit
 layout, lexical formatting and encoding, timestamp type, timestamp
 format, timestamp accuracy, node format and components, collision
 handling, and multi-timestamp tick generation sequencing:

	

 An inspection of these implementations and the issues described
 above has led to this document, in which new UUIDs are adapted to
 address these issues.
 Further, itself was in need of an overhaul to
 address a number of topics such as, but not limited to, the
 following:

	 Implementation of miscellaneous errata reports. Mostly around
	 bit-layout clarifications, which lead to inconsistent
	 implementations , ,
	 , , , etc.
 Decoupling other UUID versions from the UUIDv1 bit layout so that
 fields like "time_hi_and_version" do not need to be referenced
 within a UUID that is not time based while also providing
 definition sections similar to that for UUIDv1 for UUIDv3, UUIDv4, and UUIDv5.
 Providing implementation best practices around many real-world
 scenarios and corner cases observed by existing and prototype
 implementations.
 Addressing security best practices and
 considerations for the modern age as it pertains to MAC addresses,
 hashing algorithms, secure randomness, and other topics.
 Providing implementations a standard-based option for
 implementation-specific and/or experimental UUID designs.
 Providing more test vectors that illustrate real UUIDs created as
 per the specification.

 Terminology

 Requirements Language
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14 when, and only when, they
 appear in all capitals, as shown here.

 Abbreviations
 The following abbreviations are used in this document:

 ABNF
 Augmented Backus-Naur Form
 CSPRNG
 Cryptographically Secure Pseudorandom Number Generator
 DBMS
 Database Management System
 IEEE
 Institute of Electrical and Electronics Engineers
 ITU
 International Telecommunication Union
 MAC
 Media Access Control
 MD5
 Message Digest 5
 MSB
 Most Significant Bit
 OID
 Object Identifier
 SHA
 Secure Hash Algorithm
 SHA-1
 Secure Hash Algorithm 1 (with message digest of 160 bits)
 SHA-3
 Secure Hash Algorithm 3 (arbitrary size)
 SHA-224
 Secure Hash Algorithm 2 with message digest size of 224 bits
 SHA-256
 Secure Hash Algorithm 2 with message digest size of 256 bits
 SHA-512
 Secure Hash Algorithm 2 with message digest size of 512 bits
 SHAKE
 Secure Hash Algorithm 3 based on the KECCAK algorithm
 URN
 Uniform Resource Names
 UTC
 Coordinated Universal Time
 UUID
 Universally Unique Identifier
 UUIDv1
 Universally Unique Identifier version 1
 UUIDv2
 Universally Unique Identifier version 2
 UUIDv3
 Universally Unique Identifier version 3
 UUIDv4
 Universally Unique Identifier version 4
 UUIDv5
 Universally Unique Identifier version 5
 UUIDv6
 Universally Unique Identifier version 6
 UUIDv7
 Universally Unique Identifier version 7
 UUIDv8
 Universally Unique Identifier version 8

 UUID Format
 The UUID format is 16 octets (128 bits) in size; the variant bits in
 conjunction with the version bits described in the next sections
 determine finer structure. In terms of these UUID formats and layout, bit
 definitions start at 0 and end at 127, while octet definitions start at 0
 and end at 15.
 In the absence of explicit application or presentation protocol
 specification to the contrary, each field is encoded with the most
 significant byte first (known as "network byte order").
 Saving UUIDs to binary format is done by sequencing all fields in
 big-endian format. However, there is a known caveat that Microsoft's
 Component Object Model (COM) GUIDs leverage little-endian when saving
 GUIDs. The discussion of this (see) is outside
 the scope of this specification.
 UUIDs MAY be represented as binary data or integers.
 When in use with URNs or as text in applications, any given UUID should
 be represented by the "hex-and-dash" string format consisting of
 multiple groups of uppercase or lowercase alphanumeric hexadecimal
 characters separated by single dashes/hyphens. When used with databases,
 please refer to .
 The formal definition of the UUID string representation is provided by the following ABNF :

UUID = 4hexOctet "-"
 2hexOctet "-"
 2hexOctet "-"
 2hexOctet "-"
 6hexOctet
hexOctet = HEXDIG HEXDIG
DIGIT = %x30-39
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

 Note that the alphabetic characters may be all uppercase, all lowercase, or mixed case, as per .
An example UUID using this textual representation from the above ABNF is shown in .

 Example String UUID Format

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

 The same UUID from is represented in binary (), as an unsigned integer (), and as a URN () defined by .

 Example Binary UUID

111110000001110101001111101011100111110111101100000100011101000\
01010011101100101000000001010000011001001000111100110101111110110

 Example Unsigned Integer UUID (Shown as a Decimal Number)

329800735698586629295641978511506172918

 Example URN Namespace for UUID

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

 There are many other ways to define a UUID format; some examples are detailed below.
Please note that this is not an exhaustive list and is only provided for informational purposes.

 Some UUID implementations, such as those found in and , will output UUID
 with the string format, including dashes, enclosed in curly braces.

 provides UUID format definitions for use of
 UUID with an OID.

 is a legacy implementation that produces a
 unique UUID format compatible with Variant 0xx of .

 Variant Field
 The variant field determines the layout of the UUID. That is, the
 interpretation of all other bits in the UUID depends on the setting of
 the bits in the variant field. As such, it could more accurately be
 called a "type" field; we retain the original term for compatibility.
 The variant field consists of a variable number of the most
 significant bits of octet 8 of the UUID.
 lists the contents of the variant field,
 where the letter "x" indicates a "don't-care" value.

 UUID Variants

 MSB0
 MSB1
 MSB2
 MSB3
 Variant
 Description

 0
 x
 x
 x
 1-7
 Reserved. Network Computing System (NCS) backward compatibility, and
 includes Nil UUID as per .

 1
 0
 x
 x
 8-9,A-B
 The variant specified in this document.

 1
 1
 0
 x
 C-D
 Reserved. Microsoft Corporation backward compatibility.

 1
 1
 1
 x
 E-F
 Reserved for future definition and includes Max UUID as per .

 Interoperability, in any form, with variants other than the one
defined here is not guaranteed but is not likely to be an issue in
practice.
 Specifically for UUIDs in this document, bits 64 and 65 of the UUID (bits 0 and 1 of octet 8) MUST be set to 1 and 0 as specified in row 2 of .
Accordingly, all bit and field layouts avoid the use of these bits.

 Version Field
 The version number is in the most significant 4 bits of octet 6
(bits 48 through 51 of the UUID).
 lists all of the versions for this UUID variant 10xx specified in this document.

 UUID Variant 10xx Versions Defined by This Specification

 MSB0
 MSB1
 MSB2
 MSB3
 Version
 Description

 0
 0
 0
 0
 0
 Unused.

 0
 0
 0
 1
 1
 The Gregorian time-based UUID specified in this document.

 0
 0
 1
 0
 2
 Reserved for DCE Security version, with embedded POSIX UUIDs.

 0
 0
 1
 1
 3
 The name-based version specified in this document that uses MD5 hashing.

 0
 1
 0
 0
 4
 The randomly or pseudorandomly generated version specified in this document.

 0
 1
 0
 1
 5
 The name-based version specified in this document that uses SHA-1 hashing.

 0
 1
 1
 0
 6
 Reordered Gregorian time-based UUID specified in this document.

 0
 1
 1
 1
 7
 Unix Epoch time-based UUID specified in this document.

 1
 0
 0
 0
 8
 Reserved for custom UUID formats specified in this document.

 1
 0
 0
 1
 9
 Reserved for future definition.

 1
 0
 1
 0
 10
 Reserved for future definition.

 1
 0
 1
 1
 11
 Reserved for future definition.

 1
 1
 0
 0
 12
 Reserved for future definition.

 1
 1
 0
 1
 13
 Reserved for future definition.

 1
 1
 1
 0
 14
 Reserved for future definition.

 1
 1
 1
 1
 15
 Reserved for future definition.

 An example version/variant layout for UUIDv4 follows the table
 where "M" represents the version placement for the hexadecimal
 representation of 0x4 (0b0100) and the "N" represents the variant
 placement for one of the four possible hexadecimal representation of
 variant 10xx: 0x8 (0b1000), 0x9 (0b1001), 0xA (0b1010), 0xB
 (0b1011).

 UUIDv4 Variant Examples

00000000-0000-4000-8000-000000000000
00000000-0000-4000-9000-000000000000
00000000-0000-4000-A000-000000000000
00000000-0000-4000-B000-000000000000
xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx

 It should be noted that the other remaining UUID variants found in leverage different sub-typing or versioning mechanisms.
The recording and definition of the remaining UUID variant and sub-typing combinations are outside of the scope of this document.

 UUID Layouts
 To minimize confusion about bit assignments within octets and among
 differing versions, the UUID record definition is provided as a grouping
 of fields within a bit layout consisting of four octets per row. The
 fields are presented with the most significant one first.

 UUID Version 1
 UUIDv1 is a time-based UUID featuring a 60-bit timestamp
 represented by Coordinated Universal Time (UTC) as a count of
 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date
 of Gregorian reform to the Christian calendar).
 UUIDv1 also features a clock sequence field that is used to help
 avoid duplicates that could arise when the clock is set backwards in
 time or if the Node ID changes.
 The node field consists of an IEEE 802 MAC address, usually the
 host address or a randomly derived value per Sections and .

 UUIDv1 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time_low |
+-+
| time_mid | ver | time_high |
+-+
|var| clock_seq | node |
+-+
| node |
+-+

 time_low:
 The least significant 32 bits of the 60-bit starting
 timestamp. Occupies bits 0 through 31 (octets 0-3).
 time_mid:
 The middle 16 bits of the 60-bit starting timestamp. Occupies
 bits 32 through 47 (octets 4-5).
 ver:
 The 4-bit version field as defined by , set to 0b0001 (1). Occupies bits 48
 through 51 of octet 6.
 time_high:
 The least significant 12 bits from the 60-bit starting
 timestamp. Occupies bits 52 through 63 (octets 6-7).
 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 clock_seq:
 The 14 bits containing the clock sequence. Occupies bits 66
 through 79 (octets 8-9).
 node:
 48-bit spatially unique identifier. Occupies bits 80 through
 127 (octets 10-15).

 For systems that do not have UTC available but do have the local
 time, they may use that instead of UTC as long as they do so
 consistently throughout the system. However, this is not recommended
 since generating the UTC from local time only needs a time-zone
 offset.
 If the clock is set backwards, or if it might have been set
 backwards (e.g., while the system was powered off), and the UUID
 generator cannot be sure that no UUIDs were generated with timestamps
 larger than the value to which the clock was set, then the clock
 sequence MUST be changed. If the previous value of the
 clock sequence is known, it MAY be incremented;
 otherwise it SHOULD be set to a random or high-quality
 pseudorandom value.
 Similarly, if the Node ID changes (e.g., because a network card has
been moved between machines), setting the clock sequence to a random
number minimizes the probability of a duplicate due to slight
differences in the clock settings of the machines. If the value of
the clock sequence associated with the changed Node ID were known, then
the clock sequence MAY be incremented, but that is unlikely.
 The clock sequence MUST be originally (i.e., once in the lifetime of
a system) initialized to a random number to minimize the correlation
across systems. This provides maximum protection against Node
IDs that may move or switch from system to system rapidly.
The initial value MUST NOT be correlated to the Node ID.
 Notes about nodes derived from IEEE 802:

 On systems with multiple IEEE 802 addresses, any available one
 MAY be used.
 On systems with no IEEE address, a randomly or pseudorandomly
 generated value MUST be used; see Sections and .

 On systems utilizing a 64-bit MAC address, the least significant,
 rightmost 48 bits MAY be used.
 Systems utilizing an IEEE 802.15.4 16-bit address
 SHOULD instead utilize their 64-bit MAC address where
 the least significant, rightmost 48 bits MAY be used. An
 alternative is to generate 32 bits of random data and postfix at the
 end of the 16-bit MAC address to create a 48-bit value.

 UUID Version 2
 UUIDv2 is for DCE Security UUIDs (see and
). As such, the definition of these UUIDs is
 outside the scope of this specification.

 UUID Version 3
 UUIDv3 is meant for generating UUIDs from names that are
 drawn from, and unique within, some namespace as per .
 UUIDv3 values are created by computing an MD5 hash over a given Namespace ID value () concatenated with the desired name value after
 both have been converted to a canonical sequence of octets, as defined
 by the standards or conventions of its namespace, in network byte
 order. This MD5 value is then used to populate all 128 bits of the
 UUID layout. The UUID version and variant then replace the respective
 bits as defined by Sections and . An example of this bit substitution can be found
 in .
 Information around selecting a desired name's canonical format
 within a given namespace can be found in under the heading "A note on names".
 Where possible, UUIDv5 SHOULD be used in lieu of
 UUIDv3. For more information on MD5 security considerations, see .

 UUIDv3 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| md5_high |
+-+
| md5_high | ver | md5_mid |
+-+
|var| md5_low |
+-+
| md5_low |
+-+

 md5_high:
 The first 48 bits of the layout are filled with the most
 significant, leftmost 48 bits from the computed MD5 value. Occupies
 bits 0 through 47 (octets 0-5).
 ver:
 The 4-bit version field as defined by , set to 0b0011 (3). Occupies bits 48
 through 51 of octet 6.
 md5_mid:
 12 more bits of the layout consisting of the least significant,
 rightmost 12 bits of 16 bits immediately following md5_high from
 the computed MD5 value. Occupies bits 52 through 63 (octets 6-7).

 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 md5_low:
 The final 62 bits of the layout immediately following the var
 field to be filled with the least significant, rightmost bits of
 the final 64 bits from the computed MD5 value. Occupies bits 66
 through 127 (octets 8-15)

 UUID Version 4
 UUIDv4 is meant for generating UUIDs from truly random or
 pseudorandom numbers.
 An implementation may generate 128 bits of random data that is used
 to fill out the UUID fields in . The UUID
 version and variant then replace the respective bits as defined by
 Sections and .
 Alternatively, an implementation MAY choose to
 randomly generate the exact required number of bits for random_a,
 random_b, and random_c (122 bits total) and then concatenate the
 version and variant in the required position.
 For guidelines on random data generation, see .

 UUIDv4 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| random_a |
+-+
| random_a | ver | random_b |
+-+
|var| random_c |
+-+
| random_c |
+-+

 random_a:
 The first 48 bits of the layout that can be filled with random
 data as specified in . Occupies bits
 0 through 47 (octets 0-5).
 ver:
 The 4-bit version field as defined by , set to 0b0100 (4). Occupies bits 48
 through 51 of octet 6.
 random_b:
 12 more bits of the layout that can be filled random data as per
 . Occupies bits 52 through 63 (octets
 6-7).
 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 random_c:
 The final 62 bits of the layout immediately following the var
 field to be filled with random data as per . Occupies bits 66 through 127 (octets
 8-15).

 UUID Version 5
 UUIDv5 is meant for generating UUIDs from "names" that are
 drawn from, and unique within, some "namespace" as per .
 UUIDv5 values are created by computing an SHA-1 hash over a given Namespace ID value () concatenated with the desired name value after
 both have been converted to a canonical sequence of octets, as defined
 by the standards or conventions of its namespace, in network byte
 order. The most significant, leftmost 128 bits of the SHA-1 value
 are then used to populate all 128 bits of the UUID layout, and the
 remaining 32 least significant, rightmost bits of SHA-1 output are
 discarded. The UUID version and variant then replace the respective
 bits as defined by Sections and . An example of this bit substitution and discarding
 excess bits can be found in .
 Information around selecting a desired name's canonical format
 within a given namespace can be found in under the heading "A note on names".
 There may be scenarios, usually depending on organizational
 security policies, where SHA-1 libraries may not be available or may
 be deemed unsafe for use. As such, it may be desirable to generate
 name-based UUIDs derived from SHA-256 or newer SHA methods. These
 name-based UUIDs MUST NOT utilize UUIDv5 and
 MUST be within the UUIDv8 space defined by . An illustrative example of UUIDv8 for SHA-256
 name-based UUIDs is provided in .
 For more information on SHA-1 security considerations, see .

 UUIDv5 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| sha1_high |
+-+
| sha1_high | ver | sha1_mid |
+-+
|var| sha1_low |
+-+
| sha1_low |
+-+

 sha1_high:
 The first 48 bits of the layout are filled with the most
 significant, leftmost 48 bits from the computed SHA-1 value.
 Occupies bits 0 through 47 (octets 0-5).
 ver:
 The 4-bit version field as defined by , set to 0b0101 (5). Occupies bits 48
 through 51 of octet 6.
 sha1_mid:
 12 more bits of the layout consisting of the least significant,
 rightmost 12 bits of 16 bits immediately following sha1_high from
 the computed SHA-1 value. Occupies bits 52 through 63 (octets 6-7).

 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 sha1_low:
 The final 62 bits of the layout immediately following the var
 field to be filled by skipping the two most significant, leftmost
 bits of the remaining SHA-1 hash and then using the next 62 most
 significant, leftmost bits. Any leftover SHA-1 bits are discarded
 and unused. Occupies bits 66 through 127 (octets 8-15).

 UUID Version 6
 UUIDv6 is a field-compatible version of UUIDv1 (), reordered for improved DB locality. It is expected
 that UUIDv6 will primarily be implemented in contexts where UUIDv1 is used.
 Systems that do not involve legacy UUIDv1 SHOULD use
 UUIDv7 () instead.
 Instead of splitting the timestamp into the low, mid, and high
 sections from UUIDv1, UUIDv6 changes this sequence so timestamp bytes
 are stored from most to least significant. That is, given a 60-bit
 timestamp value as specified for UUIDv1 in ,
 for UUIDv6 the first 48 most significant bits are stored first,
 followed by the 4-bit version (same position), followed by the
 remaining 12 bits of the original 60-bit timestamp.
 The clock sequence and node bits remain unchanged from their
 position in .
 The clock sequence and node bits SHOULD be reset to
 a pseudorandom value for each new UUIDv6 generated; however,
 implementations MAY choose to retain the old clock
 sequence and MAC address behavior from . For
 more information on MAC address usage within UUIDs, see the .
 The format for the 16-byte, 128-bit UUIDv6 is shown in .

 UUIDv6 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time_high |
+-+
| time_mid | ver | time_low |
+-+
|var| clock_seq | node |
+-+
| node |
+-+

 time_high:
 The most significant 32 bits of the 60-bit starting timestamp.
 Occupies bits 0 through 31 (octets 0-3).
 time_mid:
 The middle 16 bits of the 60-bit starting timestamp. Occupies
 bits 32 through 47 (octets 4-5).
 ver:
 The 4-bit version field as defined by , set to 0b0110 (6). Occupies bits 48
 through 51 of octet 6.
 time_low:
 12 bits that will contain the least significant 12 bits from the
 60-bit starting timestamp. Occupies bits 52 through 63 (octets
 6-7).
 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 clock_seq:
 The 14 bits containing the clock sequence. Occupies bits 66
 through 79 (octets 8-9).
 node:
 48-bit spatially unique identifier. Occupies bits 80 through
 127 (octets 10-15).

 With UUIDv6, the steps for splitting the timestamp into time_high and time_mid
are OPTIONAL
since the 48 bits of time_high and time_mid will remain in the same order.
An extra step of splitting the first 48 bits of the timestamp into the most
significant
32 bits and least significant 16 bits proves useful when reusing an existing
UUIDv1 implementation.

 UUID Version 7
 UUIDv7 features a time-ordered value field derived from the widely
implemented and well-known Unix Epoch timestamp source, the number of milliseconds
since midnight 1 Jan 1970 UTC, leap seconds excluded.
Generally, UUIDv7 has improved entropy characteristics over UUIDv1 () or UUIDv6 ().
 UUIDv7 values are created by allocating a Unix timestamp in milliseconds in the most significant 48 bits and filling the remaining 74 bits, excluding the required version and variant bits, with random bits for each new UUIDv7 generated to provide uniqueness as per . Alternatively, implementations MAY fill the 74 bits, jointly, with a combination of the following subfields, in this order from the most significant bits to the least, to guarantee additional monotonicity within a millisecond:

	 An OPTIONAL sub-millisecond timestamp fraction
	 (12 bits at maximum) as per
	 (Method 3).
 An OPTIONAL carefully seeded counter as per (Method 1 or 2).
 Random data for each new UUIDv7 generated for any remaining
 space.

 Implementations SHOULD utilize UUIDv7 instead of UUIDv1 and UUIDv6 if
possible.

 UUIDv7 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| unix_ts_ms |
+-+
| unix_ts_ms | ver | rand_a |
+-+
|var| rand_b |
+-+
| rand_b |
+-+

 unix_ts_ms:
 48-bit big-endian unsigned number of the Unix Epoch timestamp in
 milliseconds as per .
 Occupies bits 0 through 47 (octets 0-5).
 ver:
 The 4-bit version field as defined by , set to 0b0111 (7). Occupies bits 48
 through 51 of octet 6.
 rand_a:
 12 bits of pseudorandom data to provide uniqueness as per and/or optional constructs to guarantee
 additional monotonicity as per . Occupies bits 52 through 63
 (octets 6-7).
 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 rand_b:
 The final 62 bits of pseudorandom data to provide uniqueness as
 per and/or an optional counter to
 guarantee additional monotonicity as per . Occupies bits 66 through 127
 (octets 8-15).

 UUID Version 8
 UUIDv8 provides a format for experimental
 or vendor-specific use cases. The only requirement is that the
 variant and version bits MUST be set as defined in
 Sections and . UUIDv8's uniqueness will be
 implementation specific and MUST NOT be assumed.
 The only explicitly defined bits are those of the version and
 variant fields, leaving 122 bits for implementation-specific UUIDs. To
 be clear, UUIDv8 is not a replacement for UUIDv4 () where all 122 extra bits are filled with random
 data.
 Some example situations in which UUIDv8 usage could occur:

 An implementation would like to embed extra information
 within the UUID other than what is defined in this document.
 An implementation has other application and/or language
 restrictions that inhibit the use of one of the current UUIDs.

 provides two illustrative examples of
 custom UUIDv8 algorithms to address two example scenarios.

 UUIDv8 Field and Bit Layout

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| custom_a |
+-+
| custom_a | ver | custom_b |
+-+
|var| custom_c |
+-+
| custom_c |
+-+

 custom_a:
 The first 48 bits of the layout that can be filled as an
 implementation sees fit. Occupies bits 0 through 47 (octets 0-5).

 ver:
 The 4-bit version field as defined by , set to 0b1000 (8). Occupies bits 48
 through 51 of octet 6.
 custom_b:
 12 more bits of the layout that can be filled as an
 implementation sees fit. Occupies bits 52 through 63 (octets 6-7).

 var:
 The 2-bit variant field as defined by , set to 0b10. Occupies bits 64 and 65 of
 octet 8.
 custom_c:
 The final 62 bits of the layout immediately following the var
 field to be filled as an implementation sees fit. Occupies bits 66
 through 127 (octets 8-15).

 Nil UUID
 The Nil UUID is special form of UUID that is specified to have all
128 bits set to zero.

 Nil UUID Format

00000000-0000-0000-0000-000000000000

 A Nil UUID value can be useful to communicate the absence of any
 other UUID value in situations that otherwise require or use a 128-bit
 UUID. A Nil UUID can express the concept "no such value here". Thus,
 it is reserved for such use as needed for implementation-specific
 situations.
 Note that the Nil UUID value falls within the range of the Apollo
 NCS variant as per the first row of rather
 than the variant defined by this document.

 Max UUID
 The Max UUID is a special form of UUID that is specified to have
 all 128 bits set to 1. This UUID can be thought of as the inverse of
 the Nil UUID defined in .

 Max UUID Format

FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFFF

 A Max UUID value can be used as a sentinel value in situations
 where a 128-bit UUID is required, but a concept such as "end of UUID
 list" needs to be expressed and is reserved for such use as needed
 for implementation-specific situations.
 Note that the Max UUID value falls within the range of the "yet-to-be defined" future UUID variant as per the last row of rather than the variant defined by this
 document.

 UUID Best Practices
 The minimum requirements for generating UUIDs of each version are described in this
 document. Everything else is an implementation detail,
 and it is up to the implementer to decide what is appropriate for a
 given implementation. Various relevant factors are covered below to help
 guide an implementer through the different trade-offs among differing
 UUID implementations.

 Timestamp Considerations
 UUID timestamp source, precision, and length were topics of great
 debate while creating UUIDv7 for this specification. Choosing the
 right timestamp for your application is very important. This
 section will detail some of the most common points on this issue.

 Reliability:
 Implementations acquire the current timestamp from a reliable
 source to provide values that are time ordered and continually
 increasing. Care must be taken to ensure that timestamp changes
 from the environment or operating system are handled in a way that
 is consistent with implementation requirements. For example, if it
 is possible for the system clock to move backward due to either
 manual adjustment or corrections from a time synchronization
 protocol, implementations need to determine how to handle such
 cases. (See "Altering, Fuzzing, or Smearing" below.)
 Source:
 UUIDv1 and UUIDv6 both utilize a Gregorian Epoch timestamp,
 while UUIDv7 utilizes a Unix Epoch timestamp. If other timestamp
 sources or a custom timestamp Epoch are required, UUIDv8
 MUST be used.
 Sub-second Precision and Accuracy:
 Many levels of precision exist for timestamps: milliseconds,
 microseconds, nanoseconds, and beyond. Additionally, fractional
 representations of sub-second precision may be desired to mix
 various levels of precision in a time-ordered manner. Furthermore,
 system clocks themselves have an underlying granularity, which is
 frequently less than the precision offered by the operating system.
 With UUIDv1 and UUIDv6, 100 nanoseconds of precision are present,
 while UUIDv7 features a millisecond level of precision by default
 within the Unix Epoch that does not exceed the granularity capable
 in most modern systems. For other levels of precision, UUIDv8 is
 available. Similar to , with
 UUIDv1 or UUIDv6, a high-resolution timestamp can be simulated by
 keeping a count of the number of UUIDs that have been generated with
 the same value of the system time and using that count to construct the low
 order bits of the timestamp. The count of the high-resolution
 timestamp will range between zero and the number of 100-nanosecond
 intervals per system-time interval.
 Length:
 The length of a given timestamp directly impacts how many
 timestamp ticks can be contained in a UUID before the maximum value
 for the timestamp field is reached. Take care to ensure that the
 proper length is selected for a given timestamp. UUIDv1 and
 UUIDv6 utilize a 60-bit timestamp valid until 5623 AD; UUIDv7 features
 a 48-bit timestamp valid until the year 10889 AD.
 Altering, Fuzzing, or Smearing:
 Implementations MAY alter the actual
 timestamp. Some examples include security considerations around
 providing a real-clock value within a UUID to 1) correct inaccurate
 clocks, 2) handle leap seconds, or 3) obtain a millisecond value by
 dividing by 1024 (or some other value) for performance reasons
 (instead of dividing a number of microseconds by 1000). This
 specification makes no requirement or guarantee about how close the
 clock value needs to be to the actual time. If UUIDs do not need to
 be frequently generated, the UUIDv1 or UUIDv6 timestamp can simply
 be the system time multiplied by the number of 100-nanosecond
 intervals per system-time interval.
 Padding:
 When timestamp padding is required, implementations
 MUST pad the most significant bits (leftmost)
 with data. An example for this padding data is to fill the most
 significant, leftmost bits of a Unix timestamp with zeroes to
 complete the 48-bit timestamp in UUIDv7. An alternative approach for
 padding data is to fill the most significant, leftmost bits with
 the number of 32-bit Unix timestamp rollovers after 2038-01-19.

 Truncating:
 When timestamps need to be truncated, the lower, least
 significant bits MUST be used. An example would be
 truncating a 64-bit Unix timestamp to the least significant,
 rightmost 48 bits for UUIDv7.
 Error Handling:
 If a system overruns the generator by requesting too many UUIDs
 within a single system-time interval, the UUID service can return an
 error or stall the UUID generator until the system clock catches
 up and MUST NOT knowingly return duplicate values
 due to a counter rollover. Note that if the processors overrun the
 UUID generation frequently, additional Node IDs can be
 allocated to the system, which will permit higher speed allocation
 by making multiple UUIDs potentially available for each timestamp
 value. Similar techniques are discussed in .

 Monotonicity and Counters
 Monotonicity (each subsequent value being greater than the last) is
 the backbone of time-based sortable UUIDs. Normally, time-based UUIDs
 from this document will be monotonic due to an embedded timestamp;
 however, implementations can guarantee additional monotonicity via the
 concepts covered in this section.
 Take care to ensure UUIDs generated in batches are also
 monotonic. That is, if one thousand UUIDs are generated for the same
 timestamp, there should be sufficient logic for organizing the
 creation order of those one thousand UUIDs. Batch UUID creation
 implementations MAY utilize a monotonic counter that
 increments for each UUID created during a given timestamp.
 For single-node UUID implementations that do not need to create
 batches of UUIDs, the embedded timestamp within UUIDv6 and UUIDv7
 can provide sufficient monotonicity guarantees by simply ensuring that
 timestamp increments before creating a new UUID. Distributed nodes are
 discussed in .
 Implementations SHOULD employ the following methods
 for single-node UUID implementations that require batch UUID creation
 or are otherwise concerned about monotonicity with high-frequency UUID
 generation.

 Fixed Bit-Length Dedicated Counter (Method 1):
 Some implementations allocate a specific number of bits in the
 UUID layout to the sole purpose of tallying the total number of
 UUIDs created during a given UUID timestamp tick. If present, a fixed
 bit-length counter MUST be positioned
 immediately after the embedded timestamp. This promotes sortability
 and allows random data generation for each counter increment.
	 With
 this method, the rand_a section (or a subset of its leftmost bits)
 of UUIDv7 is used as a fixed bit-length dedicated counter that is
 incremented for every UUID generation. The trailing random bits
 generated for each new UUID in rand_b can help produce unguessable
 UUIDs. In the event that more counter bits are required, the most
 significant (leftmost) bits of rand_b MAY be used as
 additional counter bits.
 Monotonic Random (Method 2):
 With this method, the random data is extended to also function
 as a counter. This monotonic value can be thought of as a "randomly
 seeded counter" that MUST be incremented in the
 least significant position for each UUID created on a given
 timestamp tick. UUIDv7's rand_b section SHOULD be
 utilized with this method to handle batch UUID generation during a
 single timestamp tick. The increment value for every UUID
 generation is a random integer of any desired length larger than
 zero. It ensures that the UUIDs retain the required level of
 unguessability provided by the underlying entropy. The increment
 value MAY be 1 when the number of UUIDs generated in
 a particular period of time is important and guessability is not an
 issue. However, incrementing the counter by 1 SHOULD NOT be used by implementations that favor unguessability, as
 the resulting values are easily guessable.
 Replace Leftmost Random Bits with Increased Clock Precision (Method 3):

 For UUIDv7, which has millisecond timestamp precision, it is
 possible to use additional clock precision available on the system
 to substitute for up to 12 random bits immediately following the
 timestamp. This can provide values that are time ordered with
 sub-millisecond precision, using however many bits are appropriate
 in the implementation environment. With this method, the additional
 time precision bits MUST follow the timestamp as the
 next available bit in the rand_a field for UUIDv7.
 To calculate this value, start with the portion of the timestamp
 expressed as a fraction of the clock's tick value (fraction of a
 millisecond for UUIDv7). Compute the count of possible values that
 can be represented in the available bit space, 4096 for the UUIDv7
 rand_a field. Using floating point or scaled integer arithmetic,
 multiply this fraction of a millisecond value by 4096 and round down
 (toward zero) to an integer result to arrive at a number between 0
 and the maximum allowed for the indicated bits, which sorts
 monotonically based on time. Each increasing fractional value will
 result in an increasing bit field value to the precision available
 with these bits.
 For example, let's assume a system timestamp of 1 Jan 2023
 12:34:56.1234567. Taking the precision greater than 1 ms gives us a
 value of 0.4567, as a fraction of a millisecond. If we wish to
 encode this as 12 bits, we can take the count of possible values
 that fit in those bits (4096 or 2 12), multiply it by our
 millisecond fraction value of 0.4567, and truncate the result to an
 integer, which gives an integer value of 1870. Expressed as
 hexadecimal, it is 0x74E or the binary bits 0b011101001110. One can
 then use those 12 bits as the most significant (leftmost) portion of
 the random section of the UUID (e.g., the rand_a field in UUIDv7).
 This works for any desired bit length that fits into a UUID, and
 applications can decide the appropriate length based on available
 clock precision; for UUIDv7, it is limited to 12 bits at maximum to
 reserve sufficient space for random bits.
 The main benefit to encoding additional timestamp precision is
 that it utilizes additional time precision already available in the
 system clock to provide values that are more likely to be unique; thus, it may simplify certain implementations. This technique can
 also be used in conjunction with one of the other methods, where
 this additional time precision would immediately follow the
 timestamp. Then, if any bits are to be used as a clock sequence,
 they would follow next.

 The following sub-topics cover issues related solely to creating reliable
fixed bit-length dedicated counters:

 Fixed Bit-Length Dedicated Counter Seeding:
 Implementations utilizing the fixed bit-length counter method
 randomly initialize the counter with each new timestamp tick.
 However, when the timestamp has not increased, the counter is
 instead incremented by the desired increment logic. When utilizing
 a randomly seeded counter alongside Method 1, the random value
 MAY be regenerated with each counter increment
 without impacting sortability. The downside is that Method 1 is
 prone to overflows if a counter of adequate length is not selected
 or the random data generated leaves little room for the required
 number of increments. Implementations utilizing fixed bit-length
 counter method MAY also choose to randomly initialize
 a portion of the counter rather than the entire counter. For
 example, a 24-bit counter could have the 23 bits in
 least significant, rightmost position randomly initialized. The
 remaining most significant, leftmost counter bit is initialized as
 zero for the sole purpose of guarding against counter rollovers.

 Fixed Bit-Length Dedicated Counter Length:
 Select a counter bit-length that can properly handle the level
 of timestamp precision in use. For example, millisecond precision
 generally requires a larger counter than a timestamp with nanosecond
 precision. General guidance is that the counter
 SHOULD be at least 12 bits but no longer than 42
 bits. Care must be taken to ensure that the counter length selected
 leaves room for sufficient entropy in the random portion of the UUID
 after the counter. This entropy helps improve the unguessability
 characteristics of UUIDs created within the batch.

 The following sub-topics cover rollover handling with either type of counter
method:

 Counter Rollover Guards:
 The technique from "Fixed Bit-Length Dedicated Counter Seeding" above that
 describes allocating a segment of the fixed bit-length counter as a
 rollover guard is also helpful to mitigate counter rollover issues.
 This same technique can be used with monotonic random counter
 methods by ensuring that the total length of a possible increment in
 the least significant, rightmost position is less than the total
 length of the random value being incremented. As such, the most
 significant, leftmost bits can be incremented as rollover
 guarding.
 Counter Rollover Handling:
 Counter rollovers MUST be handled by the
 application to avoid sorting issues. The general guidance is that
 applications that care about absolute monotonicity and sortability
 should freeze the counter and wait for the timestamp to advance,
 which ensures monotonicity is not broken. Alternatively,
 implementations MAY increment the timestamp ahead of
 the actual time and reinitialize the counter.

 Implementations MAY use the following logic to
 ensure UUIDs featuring embedded counters are monotonic in nature:

	 Compare the current timestamp against the previously stored
	 timestamp.
 If the current timestamp is equal to the previous timestamp,
 increment the counter according to the desired method.
 If the current timestamp is greater than the previous timestamp,
 re-initialize the desired counter method to the new timestamp and
 generate new random bytes (if the bytes were frozen or being used as
 the seed for a monotonic counter).

 Monotonic Error Checking:
 Implementations SHOULD check if the currently
 generated UUID is greater than the previously generated UUID. If
 this is not the case, then any number of things could have occurred,
 such as clock rollbacks, leap second handling, and counter
 rollovers. Applications SHOULD embed sufficient logic
 to catch these scenarios and correct the problem to ensure that the
 next UUID generated is greater than the previous, or they should at least report
 an appropriate error. To handle this scenario, the general guidance
 is that the application MAY reuse the previous timestamp
 and increment the previous counter method.

 UUID Generator States
 The (optional) UUID generator state only needs to be read from
 stable storage once at boot time, if it is read into a system-wide
 shared volatile store (and updated whenever the stable store is
 updated).
 This stable storage MAY be used to record various
 portions of the UUID generation, which prove useful for batch UUID
 generation purposes and monotonic error checking with UUIDv6 and
 UUIDv7. These stored values include but are not limited to last known
 timestamp, clock sequence, counters, and random data.
 If an implementation does not have any stable store available, then
 it MAY proceed with UUID generation as if this were the
 first UUID created within a batch. This is the least desirable
 implementation because it will increase the frequency of creation of
 values such as clock sequence, counters, or random data, which
 increases the probability of duplicates. Further, frequent generation
 of random numbers also puts more stress on any entropy source and/or
 entropy pool being used as the basis for such random numbers.
 An implementation MAY also return an application
 error in the event that collision resistance is of the utmost concern.
 The semantics of this error are up to the application and
 implementation. See for more
 information on weighting collision tolerance in applications.
 For UUIDv1 and UUIDv6, if the Node ID can never change (e.g., the
 network interface card from which the Node ID is derived is
 inseparable from the system), or if any change also re-initializes the
 clock sequence to a random value, then instead of keeping it in stable
 store, the current Node ID may be returned.
 For UUIDv1 and UUIDv6, the state does not always need to be written
 to stable store every time a UUID is generated. The timestamp in the
 stable store can periodically be set to a value larger than any yet
 used in a UUID. As long as the generated UUIDs have timestamps less
 than that value, and the clock sequence and Node ID remain unchanged,
 only the shared volatile copy of the state needs to be updated.
 Furthermore, if the timestamp value in stable store is in the future
 by less than the typical time it takes the system to reboot, a crash
 will not cause a re-initialization of the clock sequence.
 If it is too expensive to access shared state each time a UUID is
 generated, then the system-wide generator can be implemented to
 allocate a block of timestamps each time it is called; a per-process
 generator can allocate from that block until it is exhausted.

 Distributed UUID Generation
 Some implementations MAY desire the utilization of
 multi-node, clustered, applications that involve two or more nodes
 independently generating UUIDs that will be stored in a common
 location. While UUIDs already feature sufficient entropy to ensure
 that the chances of collision are low, as the total number of UUID
 generating nodes increases, so does the likelihood of a collision.
 This section will detail the two additional collision resistance
 approaches that have been observed by multi-node UUID implementations
 in distributed environments.
 It should be noted that, although this section details two methods
 for the sake of completeness, implementations should utilize the
 pseudorandom Node ID option if additional collision resistance for
 distributed UUID generation is a requirement. Likewise, utilization
 of either method is not required for implementing UUID generation in
 distributed environments.

 Node IDs:
 With this method, a pseudorandom Node ID value is placed within
 the UUID layout. This identifier helps ensure the bit space for a
 given node is unique, resulting in UUIDs that do not conflict with
 any other UUID created by another node with a different node id.
 Implementations that choose to leverage an embedded node id
 SHOULD utilize UUIDv8. The node id SHOULD NOT be an IEEE 802 MAC address per . The location and bit length are left to
 implementations and are outside the scope of this specification.
 Furthermore, the creation and negotiation of unique node ids among
 nodes is also out of scope for this specification.
 Centralized Registry:
 With this method, all nodes tasked with creating UUIDs consult a
 central registry and confirm the generated value is unique. As
 applications scale, the communication with the central registry
 could become a bottleneck and impact UUID generation in a negative
 way. Shared knowledge schemes with central/global registries are
 outside the scope of this specification and are NOT RECOMMENDED.

 Distributed applications generating UUIDs at a variety of hosts MUST
be willing to rely on the random number source at all hosts.

 Name-Based UUID Generation
 Although some prefer to use the word "hash-based" to describe UUIDs
	featuring hashing algorithms (MD5 or SHA-1), this document retains the
	usage of the term "name-based" in order to maintain consistency with
	previously published documents and existing implementations.
 The requirements for name-based UUIDs are as follows:

 UUIDs generated at different times from the same name (using
 the same canonical format) in the same namespace MUST
 be equal.
 UUIDs generated from two different names (same or differing
 canonical format) in the same namespace should be different (with
 very high probability).
 UUIDs generated from the same name (same or differing
 canonical format) in two different namespaces should be different
 (with very high probability).
 If two UUIDs that were generated from names (using the same
 canonical format) are equal, then they were generated from the same
 name in the same namespace (with very high probability).

 A note on names:
 The concept of name (and namespace) should be broadly
 construed and not limited to textual names. A canonical sequence of
 octets is one that conforms to the specification for that name
 form's canonical representation. A name can have many usual forms,
 only one of which can be canonical. An implementer of new namespaces
 for UUIDs needs to reference the specification for the canonical
 form of names in that space or define such a canonical form for the
 namespace if it does not exist. For example, at the time of
 writing, Domain Name System (DNS) has three
 conveyance formats: common (www.example.com), presentation
 (www.example.com.), and wire format (3www7example3com0). Looking at
 Distinguished Names (DNs), allowed either text-based or
 binary DER-based names as inputs. For Uniform Resource Locators
 (URLs) , one could provide a Fully Qualified
 Domain Name (FQDN) with or without the protocol identifier
 www.example.com or https://www.example.com. When it comes to Object
 Identifiers (OIDs) , one could choose dot
 notation without the leading dot (2.999), choose to include the
 leading dot (.2.999), or select one of the many formats from such as OID Internationalized Resource Identifier
 (OID-IRI) (/Joint-ISO-ITU-T/Example). While most users may default
 to the common format for DNS, FQDN format for a URL, text format for
 X.500, and dot notation without a leading dot for OID, name-based
 UUID implementations generally SHOULD allow arbitrary
 input that will compute name-based UUIDs for any of the
 aforementioned example names and others not defined here. Each name
 format within a namespace will output different UUIDs. As such, the
 mechanisms or conventions used for allocating names and ensuring
 their uniqueness within their namespaces are beyond the scope of
 this specification.

 Namespace ID Usage and Allocation
 This section details the namespace
 IDs for some potentially interesting namespaces such as those for DNS
 , URLs , OIDs , and DNs .
 Further, this section also details allocation, IANA registration,
 and other details pertinent to Namespace IDs.

 Namespace IDs

 Namespace
 Namespace ID Value
 Name Reference
 Namespace ID Reference

 DNS
 6ba7b810-9dad-11d1-80b4-00c04fd430c8

 , RFC 9562

 URL
 6ba7b811-9dad-11d1-80b4-00c04fd430c8

 , RFC 9562

 OID
 6ba7b812-9dad-11d1-80b4-00c04fd430c8

 , RFC 9562

 X500
 6ba7b814-9dad-11d1-80b4-00c04fd430c8

 , RFC 9562

 Items may be added to this registry using the Specification Required
 policy as per .
 For designated experts, generally speaking, Namespace IDs are
 allocated as follows:

 The first Namespace ID value, for DNS, was calculated from a
 time-based UUIDv1 and "6ba7b810-9dad-11d1-80b4-00c04fd430c8", used as
 a starting point.
 Subsequent Namespace ID values increment the
 least significant, rightmost bit of time_low "6ba7b810" while
 freezing the rest of the UUID to "9dad-11d1-80b4-00c04fd430c8".
 New Namespace ID values MUST use this same
 logic and MUST NOT use a previously used Namespace ID
 value.
 Thus, "6ba7b815" is the next available time_low for a new
 Namespace ID value with the full ID being
 "6ba7b815-9dad-11d1-80b4-00c04fd430c8".
 The upper bound for time_low in this special use, Namespace ID
 values, is "ffffffff" or "ffffffff-9dad-11d1-80b4-00c04fd430c8",
 which should be sufficient space for future Namespace ID values.

 Note that the Namespace ID value
 "6ba7b813-9dad-11d1-80b4-00c04fd430c8" and its usage are not defined by
 this document or by ; thus, it SHOULD NOT be used as a Namespace ID value.
 New Namespace ID values MUST be documented as per
 if they are to be globally available and fully
 interoperable. Implementations MAY continue to use
 vendor-specific, application-specific, and deployment-specific
 Namespace ID values; but know that interoperability is not guaranteed.
 These custom Namespace ID values MUST NOT use the logic
 above; instead, generating a
 UUIDv4 or UUIDv7 Namespace ID value is RECOMMENDED. If collision probability () and uniqueness () of the final name-based UUID are
 not a problem, an implementation MAY also leverage
 UUIDv8 instead to create a custom, application-specific Namespace ID
 value.
 Implementations SHOULD provide the ability to input
 a custom namespace to account for newly registered IANA Namespace ID
 values outside of those listed in this section or custom,
 application-specific Namespace ID values.

 Collision Resistance
 Implementations should weigh the consequences of UUID collisions
 within their application and when deciding between UUID versions that
 use entropy (randomness) versus the other components such as those in
 Sections
 and . This is
 especially true for distributed node collision resistance as defined
 by .
 There are two example scenarios below that help illustrate the
 varying seriousness of a collision within an application.

 Low Impact:
 A UUID collision generated a duplicate log entry, which results
 in incorrect statistics derived from the data. Implementations that
 are not negatively affected by collisions may continue with the
 entropy and uniqueness provided by UUIDs defined in this document.

 High Impact:
 A duplicate key causes an airplane to receive the wrong course,
 which puts people's lives at risk. In this scenario, there is no
 margin for error. Collisions must be avoided: failure is
 unacceptable. Applications dealing with this type of scenario must
 employ as much collision resistance as possible within the given
 application context.

 Global and Local Uniqueness
 UUIDs created by this specification MAY be used to
 provide local uniqueness guarantees. For example, ensuring UUIDs
 created within a local application context are unique within a
 database MAY be sufficient for some implementations
 where global uniqueness outside of the application context, in other
 applications, or around the world is not required.
 Although true global uniqueness is impossible to guarantee without
 a shared knowledge scheme, a shared knowledge scheme is not required
 by a UUID to provide uniqueness for practical implementation purposes.
 Implementations MAY use a shared knowledge
 scheme, introduced in ,
 as they see fit to extend the uniqueness guaranteed by this
 specification.

 Unguessability
 Implementations SHOULD utilize a cryptographically
 secure pseudorandom number generator (CSPRNG) to provide values that
 are both difficult to predict ("unguessable") and have a low
 likelihood of collision ("unique"). The exception is when a suitable
 CSPRNG is unavailable in the execution environment. Take care to
 ensure the CSPRNG state is properly reseeded upon state changes, such
 as process forks, to ensure proper CSPRNG operation. CSPRNG ensures
 the best of Sections and are
 present in modern UUIDs.
 Further advice on generating cryptographic-quality random numbers
 can be found in , ,
 and .

 UUIDs That Do Not Identify the Host
 This section describes how to generate a UUIDv1 or UUIDv6 value if
 an IEEE 802 address is not available or its use is not desired.
 Implementations MAY leverage MAC address
 randomization techniques as an alternative to the pseudorandom logic
 provided in this section.
 Alternatively, implementations MAY elect to obtain a
 48-bit cryptographic-quality random number as per to use as the Node ID. After generating the
 48-bit fully randomized node value, implementations
 MUST set the least significant bit of the first octet
 of the Node ID to 1. This bit is the unicast or multicast bit, which
 will never be set in IEEE 802 addresses obtained from network cards.
 Hence, there can never be a conflict between UUIDs generated by
 machines with and without network cards. An example of generating a
 randomized 48-bit node value and the subsequent bit modification is
 detailed in . For more information about
 IEEE 802 address and the unicast or multicast or local/global bits,
 please review .
 For compatibility with earlier specifications, note that this
 document uses the unicast or multicast bit instead of the arguably more
 correct local/global bit because MAC addresses with the local/global
 bit set or not set are both possible in a network. This is not the case
 with the unicast or multicast bit. One node cannot have a MAC address
 that multicasts to multiple nodes.
 In addition, items such as the computer's name and the name of the
 operating system, while not strictly speaking random, will help
 differentiate the results from those obtained by other systems.
 The exact algorithm to generate a Node ID using these data is
 system specific because both the data available and the functions to
 obtain them are often very system specific. However, a generic approach
 is to accumulate as many sources as possible into a buffer, use a
 message digest (such as SHA-256 or SHA-512 defined by), take an arbitrary 6 bytes from the hash value,
 and set the multicast bit as described above.

 Sorting
 UUIDv6 and UUIDv7 are designed so that implementations that require
 sorting (e.g., database indexes) sort as opaque raw bytes without the
 need for parsing or introspection.
 Time-ordered monotonic UUIDs benefit from greater database-index
 locality because the new values are near each other in the index. As
 a result, objects are more easily clustered together for better
 performance. The real-world differences in this approach of index
 locality versus random data inserts can be one order of magnitude or
 more.
 UUID formats created by this specification are intended to be
 lexicographically sortable while in the textual representation.
 UUIDs created by this specification are crafted with big-endian
 byte order (network byte order) in mind. If little-endian style is
 required, UUIDv8 is available for custom UUID formats.

 Opacity
 As general guidance, avoiding parsing UUID values
 unnecessarily is recommended; instead, treat UUIDs as opaquely as possible.
 Although application-specific concerns could, of course, require some
 degree of introspection (e.g., to examine Sections or or perhaps the timestamp of
 a UUID), the advice here is to avoid this or other parsing unless
 absolutely necessary. Applications typically tend to be simpler, be more
 interoperable, and perform better when this advice is followed.

 DBMS and Database Considerations
 For many applications, such as databases, storing UUIDs as text is
 unnecessarily verbose, requiring 288 bits to represent 128-bit UUID
 values. Thus, where feasible, UUIDs SHOULD be stored
 within database applications as the underlying 128-bit binary
 value.
 For other systems, UUIDs MAY be stored in binary
 form or as text, as appropriate. The trade-offs to both approaches
 are as follows:

 Storing in binary form requires less space and may result in faster
 data access.
 Storing as text requires more space but may require less
 translation if the resulting text form is to be used after
 retrieval, which may make it simpler to implement.

 DBMS vendors are encouraged to provide functionality to generate
 and store UUID formats defined by this specification for use as
 identifiers or left parts of identifiers such as, but not limited to,
 primary keys, surrogate keys for temporal databases, foreign keys
 included in polymorphic relationships, and keys for key-value pairs in
 JSON columns and key-value databases. Applications using a monolithic
 database may find using database-generated UUIDs (as opposed to
 client-generated UUIDs) provides the best UUID monotonicity. In
 addition to UUIDs, additional identifiers MAY be used
 to ensure integrity and feedback.
 Designers of database schema are cautioned against using name-based
 UUIDs (see Sections and) as primary keys in tables. A
 common issue observed in database schema design is the assumption that
 a particular value will never change, which later turns out to be
 an incorrect assumption. Postal codes, license or other
 identification numbers, and numerous other such identifiers seem
 unique and unchanging at a given point time -- only later to have edge
 cases where they need to change. The subsequent change of the
 identifier, used as a "name" input for name-based UUIDs, can
 invalidate a given database structure. In such scenarios, it is
 observed that using any non-name-based UUID version would have
 resulted in the field in question being placed somewhere that would
 have been easier to adapt to such changes (primary key excluded from
 this statement). The general advice is to avoid name-based UUID
 natural keys and, instead, to utilize time-based UUID surrogate keys
 based on the aforementioned problems detailed in this section.

 IANA Considerations
 All references to in IANA registries
 (outside of those created by this document) have been replaced with
 references to this document, including the IANA URN namespace
 registration for UUID. References to
 have been
 updated to refer to of this document.
 Finally, IANA should track UUID Subtypes and Special Case "Namespace
 IDs Values" as specified in Sections and at the
 following location: .
 When evaluating requests, the designated expert should consider
 community feedback, how well-defined the reference specification is, and
 this specification's requirements. Vendor-specific,
 application-specific, and deployment-specific values are unable to be
 registered. Specification documents should be published in a stable,
 freely available manner (ideally, located with a URL) but need not be
 standards. The designated expert will either approve or deny the
 registration request and communicate this decision to IANA. Denials
 should include an explanation and, if applicable, suggestions as to how
 to make the request successful.

 IANA UUID Subtype Registry and Registration
 This specification defines the "UUID Subtypes" registry for common
 widely used UUID standards.

 IANA UUID Subtypes

 Name
 ID
 Subtype
 Variant
 Reference

 Gregorian Time-based
 1
 version
 OSF DCE / IETF

 , RFC 9562

 DCE Security
 2
 version
 OSF DCE / IETF

 ,

 MD5 Name-based
 3
 version
 OSF DCE / IETF

 , RFC 9562

 Random
 4
 version
 OSF DCE / IETF

 , RFC 9562

 SHA-1 Name-based
 5
 version
 OSF DCE / IETF

 , RFC 9562

 Reordered Gregorian Time-based
 6
 version
 OSF DCE / IETF
 RFC 9562

 Unix Time-based
 7
 version
 OSF DCE / IETF
 RFC 9562

 Custom
 8
 version
 OSF DCE / IETF
 RFC 9562

 This table may be extended by Standards Action as per
 .
 For designated experts:

 The minimum and maximum "ID" value for the subtype "version"
 within the "OSF DCE / IETF" variant is 0 through 15. The versions
 within described as "Reserved for future
 definition" or "unused" are omitted from this IANA registry until
 properly defined.
 The "Subtype" column is free-form text. However, at the time of
 publication, "version" and "family" are the only known UUID
 subtypes. The "family" subtype is part of the "Apollo NCS" variant
 space (both are outside the scope of this specification). The
 Microsoft variant may have subtyping mechanisms defined; however,
 they are unknown and outside of the scope of this
 specification. Similarly, the final "Reserved for future definition"
 variant may introduce new subtyping logic at a future date. Subtype
 IDs are permitted to overlap. That is, an ID of "1" may exist in
 multiple variant spaces.
 The "Variant" column is free-form text. However, it is likely that one
 of four values will be included: the first three are "OSF DCE /
 IETF", "Apollo NCS", and "Microsoft", and the final variant value belongs to
 the "Reserved for future definition" variant and may introduce a new
 name at a future date.

 IANA UUID Namespace ID Registry and Registration
 This specification defines the "UUID Namespace IDs" registry for common, widely used Namespace ID values.
 The full details of this registration, including information for designated experts, can be found in .

 Security Considerations
 Implementations SHOULD NOT assume that UUIDs are hard
 to guess. For example, they MUST NOT be used as security
 capabilities (identifiers whose mere possession grants access).
 Discovery of predictability in a random number source will result in a
 vulnerability.
 Implementations MUST NOT assume that it is easy to
 determine if a UUID has been slightly modified in order to redirect a
 reference to another object. Humans do not have the ability to easily
 check the integrity of a UUID by simply glancing at it.
 MAC addresses pose inherent security risks around privacy and
 SHOULD NOT be used within a UUID. Instead CSPRNG data
 SHOULD be selected from a source with sufficient entropy
 to ensure guaranteed uniqueness among UUID generation. See Sections
 and for more information.
 Timestamps embedded in the UUID do pose a very small attack
 surface. The timestamp in conjunction with an embedded counter does
 signal the order of creation for a given UUID and its corresponding data
 but does not define anything about the data itself or the application as
 a whole. If UUIDs are required for use with any security operation
 within an application context in any shape or form, then UUIDv4 () SHOULD be utilized.
 See for MD5 security considerations and
 for SHA-1 security considerations.

 References

 Normative References

 X/Open DCE: Remote Procedure Call

 X/Open Company Limited

 DCE 1.1: Authentication and Security Services

 The Open Group

 Secure Hash Standard (SHS)

 National Institute of Standards and Technology (NIST)

 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

 National Institute of Standards and Technology (NIST)

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Uniform Resource Names (URNs)

 A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that is assigned under the "urn" URI scheme and a particular URN namespace, with the intent that the URN will be a persistent, location-independent resource identifier. With regard to URN syntax, this document defines the canonical syntax for URNs (in a way that is consistent with URI syntax), specifies methods for determining URN-equivalence, and discusses URI conformance. With regard to URN namespaces, this document specifies a method for defining a URN namespace and associating it with a namespace identifier, and it describes procedures for registering namespace identifiers with the Internet Assigned Numbers Authority (IANA). This document obsoletes both RFCs 2141 and 3406.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Information technology - Open Systems Interconnection - Procedures for the operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 object identifier components

 ITU-T

 Informative References

 Creating sequential GUIDs in C# for MSSQL or PostgreSql

 commit 2759820

 Collision-resistant ids optimized for horizontal scaling and performance.

 commit 215b27b

 Sequential UUID / Flake ID generator pulled out of elasticsearch common

 commit dd71c21

 Erratum ID 1957

 RFC Errata

 RFC 4122

 Erratum ID 3546

 RFC Errata

 RFC 4122

 Erratum ID 4975

 RFC Errata

 RFC 4122

 Erratum ID 4976

 RFC Errata

 RFC 4122

 Erratum ID 5560

 RFC Errata

 RFC 4122

 Flake: A decentralized, k-ordered id generation service in Erlang

 Boundary

 commit 15c933a

 Flake ID Generator

 commit fcd6a2f

 uuid_gen Command (NCS)

 IBM

 IEEE Standard for Floating-Point Arithmetic.

 IEEE

 IEEE Draft Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for Extremely High Throughput (EHT)

 IEEE

 K-Sortable Globally Unique IDs

 Segment

 commit bf376a7

 Cassie

 Twitter

 commit f6da4e0

 2.3.4.3 GUID - Curly Braced String Representation

 Microsoft

 Why does COM express GUIDs in a mix of big-endian and little-endian? Why can't it just pick a side and stick with it?

 Microsoft

 ObjectId

 MongoDB

 Laravel: The mysterious "Ordered UUID"

 The 2^120 Ways to Ensure Unique Identifiers

 Google

 uuid - UUID objects according to RFC 4122

 Python

 Random Number Generator Recommendations for Applications

 The MD5 Message-Digest Algorithm

 This document describes the MD5 message-digest algorithm. The algorithm takes as input a message of arbitrary length and produces as output a 128-bit "fingerprint" or "message digest" of the input. This memo provides information for the Internet community. It does not specify an Internet standard.

 Uniform Resource Locators (URL)

 This document specifies a Uniform Resource Locator (URL), the syntax and semantics of formalized information for location and access of resources via the Internet. [STANDARDS-TRACK]

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 A Universally Unique IDentifier (UUID) URN Namespace

 This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and can guarantee uniqueness across space and time. UUIDs were originally used in the Apollo Network Computing System and later in the Open Software Foundation\'s (OSF) Distributed Computing Environment (DCE), and then in Microsoft Windows platforms.
 This specification is derived from the DCE specification with the kind permission of the OSF (now known as The Open Group). Information from earlier versions of the DCE specification have been incorporated into this document. [STANDARDS-TRACK]

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms

 This document updates the security considerations for the MD5 message digest algorithm. It also updates the security considerations for HMAC-MD5. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms

 This document includes security considerations for the SHA-0 and SHA-1 message digest algorithm. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Randomness Improvements for Security Protocols

 Randomness is a crucial ingredient for Transport Layer Security (TLS) and related security protocols. Weak or predictable "cryptographically secure" pseudorandom number generators (CSPRNGs) can be abused or exploited for malicious purposes. An initial entropy source that seeds a CSPRNG might be weak or broken as well, which can also lead to critical and systemic security problems. This document describes a way for security protocol implementations to augment their CSPRNGs using long-term private keys. This improves randomness from broken or otherwise subverted CSPRNGs.
 This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

 DNS Terminology

 The Domain Name System (DNS) is defined in literally dozens of different RFCs. The terminology used by implementers and developers of DNS protocols, and by operators of DNS systems, has changed in the decades since the DNS was first defined. This document gives current definitions for many of the terms used in the DNS in a single document.
 This document updates RFC 2308 by clarifying the definitions of "forwarder" and "QNAME". It obsoletes RFC 8499 by adding multiple terms and clarifications. Comprehensive lists of changed and new definitions can be found in Appendices A and B.

 IANA Considerations and IETF Protocol and Documentation Usage for IEEE 802 Parameters

 Some IETF protocols make use of Ethernet frame formats and IEEE 802 parameters. This document discusses several aspects of such parameters and their use in IETF protocols, specifies IANA considerations for assignment of points under the IANA Organizationally Unique Identifier (OUI), and provides some values for use in documentation. This document obsoletes RFC 7042.

 Sharding & IDs at Instagram

 Instagram Engineering

 sid : generate sortable identifiers

 Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.

 Twitter

 commit ec40836

 A distributed unique ID generator inspired by Twitter's Snowflake

 Sony

 commit 848d664

 Universally Unique Lexicographically Sortable Identifier

 Uniform Resource Names (URN) Namespaces

 IANA

 Information technology - Open Systems Interconnection - The Directory: Overview of concepts, models and services

 ITU-T

 Information technology - Procedures for the operation of object identifier registration authorities: General procedures and top arcs of the international object identifier tree

 ITU-T

 Information Technology - Abstract Syntax Notation One (ASN.1) & ASN.1 encoding rules

 ITU-T

 Globally Unique ID Generator

 commit efa678f

 Test Vectors
 Both UUIDv1 and UUIDv6 test vectors utilize the same 60-bit
 timestamp: 0x1EC9414C232AB00 (138648505420000000) Tuesday, February 22,
 2022 2:22:22.000000 PM GMT-05:00.
 Both UUIDv1 and UUIDv6 utilize the same values in clock_seq and
 node; all of which have been generated with random data. For the
 randomized node, the least significant bit of the first octet is set to
 a value of 1 as per . Thus, the starting
 value 0x9E6BDECED846 was changed to 0x9F6BDECED846.
 The pseudocode used for converting from a 64-bit Unix timestamp to a
 100 ns Gregorian timestamp value has been left in the document for
 reference purposes.

 Test Vector Timestamp Pseudocode

Gregorian-to-Unix Offset:
The number of 100 ns intervals between the
UUID Epoch 1582-10-15 00:00:00
and the Unix Epoch 1970-01-01 00:00:00
Greg_Unix_offset = 0x01b21dd213814000 or 122192928000000000

Unix 64-bit Nanosecond Timestamp:
Unix NS: Tuesday, February 22, 2022 2:22:22 PM GMT-05:00
Unix_64_bit_ns = 0x16D6320C3D4DCC00 or 1645557742000000000

Unix Nanosecond precision to Gregorian 100-nanosecond intervals
Greg_100_ns = (Unix_64_bit_ns/100)+Greg_Unix_offset

Work:
Greg_100_ns = (1645557742000000000/100)+122192928000000000
Unix_64_bit_ns = (138648505420000000-122192928000000000)*100

Final:
Greg_100_ns = 0x1EC9414C232AB00 or 138648505420000000

 Example of a UUIDv1 Value

 UUIDv1 Example Test Vector

field bits value

time_low 32 0xC232AB00
time_mid 16 0x9414
ver 4 0x1
time_high 12 0x1EC
var 2 0b10
clock_seq 14 0b11, 0x3C8
node 48 0x9F6BDECED846

total 128

final: C232AB00-9414-11EC-B3C8-9F6BDECED846

 Example of a UUIDv3 Value
 The MD5 computation from is detailed in
 using the DNS Namespace ID value and the Name "www.example.com".
 The field mapping and all values are illustrated in . Finally, to further illustrate the bit swapping
 for version and variant, see .

 UUIDv3 Example MD5

Namespace (DNS): 6ba7b810-9dad-11d1-80b4-00c04fd430c8
Name: www.example.com
--
MD5: 5df418813aed051548a72f4a814cf09e

 UUIDv3 Example Test Vector

field bits value

md5_high 48 0x5df418813aed
ver 4 0x3
md5_mid 12 0x515
var 2 0b10
md5_low 62 0b00, 0x8a72f4a814cf09e

total 128

final: 5df41881-3aed-3515-88a7-2f4a814cf09e

 UUIDv3 Example Ver/Var Bit Swaps

MD5 hex and dash: 5df41881-3aed-0515-48a7-2f4a814cf09e
Ver and Var Overwrite: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
Final: 5df41881-3aed-3515-88a7-2f4a814cf09e

 Example of a UUIDv4 Value
 This UUIDv4 example was created by generating 16 bytes of random
 data resulting in the hexadecimal value of
 919108F752D133205BACF847DB4148A8. This is then used to fill out the
 fields as shown in .
 Finally, to further illustrate the bit swapping for version and
 variant, see .

 UUIDv4 Example Test Vector

field bits value

random_a 48 0x919108f752d1
ver 4 0x4
random_b 12 0x320
var 2 0b10
random_c 62 0b01, 0xbacf847db4148a8

total 128

final: 919108f7-52d1-4320-9bac-f847db4148a8

 UUIDv4 Example Ver/Var Bit Swaps

Random hex: 919108f752d133205bacf847db4148a8
Random hex and dash: 919108f7-52d1-3320-5bac-f847db4148a8
Ver and Var Overwrite: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
Final: 919108f7-52d1-4320-9bac-f847db4148a8

 Example of a UUIDv5 Value
 The SHA-1 computation form is detailed in ,
 using the DNS Namespace ID value and the Name "www.example.com". The
 field mapping and all values are illustrated in . Finally, to further illustrate the bit swapping
 for version and variant and the unused/discarded part of the SHA-1
 value, see .

 UUIDv5 Example SHA-1

Namespace (DNS): 6ba7b810-9dad-11d1-80b4-00c04fd430c8
Name: www.example.com
--
SHA-1: 2ed6657de927468b55e12665a8aea6a22dee3e35

 UUIDv5 Example Test Vector

field bits value

sha1_high 48 0x2ed6657de927
ver 4 0x5
sha1_mid 12 0x68b
var 2 0b10
sha1_low 62 0b01, 0x5e12665a8aea6a2

total 128

final: 2ed6657d-e927-568b-95e1-2665a8aea6a2

 UUIDv5 Example Ver/Var Bit Swaps and Discarded SHA-1 Segment

SHA-1 hex and dash: 2ed6657d-e927-468b-55e1-2665a8aea6a2-2dee3e35
Ver and Var Overwrite: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
Final: 2ed6657d-e927-568b-95e1-2665a8aea6a2
Discarded: -2dee3e35

 Example of a UUIDv6 Value

 UUIDv6 Example Test Vector

field bits value

time_high 32 0x1EC9414C
time_mid 16 0x232A
ver 4 0x6
time_high 12 0xB00
var 2 0b10
clock_seq 14 0b11, 0x3C8
node 48 0x9F6BDECED846

total 128

final: 1EC9414C-232A-6B00-B3C8-9F6BDECED846

 Example of a UUIDv7 Value
 This example UUIDv7 test vector utilizes a well-known Unix Epoch
 timestamp with millisecond precision to fill the first 48 bits.
 rand_a and rand_b are filled with random data.
 The timestamp is Tuesday, February 22, 2022 2:22:22.00 PM
 GMT-05:00, represented as 0x017F22E279B0 or 1645557742000.

 UUIDv7 Example Test Vector

field bits value

unix_ts_ms 48 0x017F22E279B0
ver 4 0x7
rand_a 12 0xCC3
var 2 0b10
rand_b 62 0b01, 0x8C4DC0C0C07398F

total 128

final: 017F22E2-79B0-7CC3-98C4-DC0C0C07398F

 Illustrative Examples
 The following sections contain illustrative examples that serve to
 show how one may use UUIDv8 () for custom and/or
 experimental application-based logic. The examples below have not been
 through the same rigorous testing, prototyping, and feedback loop that
 other algorithms in this document have undergone. The authors
 encourage implementers to create their own UUIDv8 algorithm rather than
 use the items defined in this section.

 Example of a UUIDv8 Value (Time-Based)
 This example UUIDv8 test vector utilizes a well-known 64-bit Unix
 Epoch timestamp with 10 ns precision, truncated to the
 least significant, rightmost bits to fill the first 60 bits of
 custom_a and custom_b, while setting the version bits between these two
 segments to the version value of 8.
 The variant bits are set; and the final segment, custom_c, is filled
 with random data.
 Timestamp is Tuesday, February 22, 2022 2:22:22.000000 PM
 GMT-05:00, represented as 0x2489E9AD2EE2E00 or 164555774200000000
 (10 ns-steps).

 UUIDv8 Example Time-Based Illustrative Example

field bits value

custom_a 48 0x2489E9AD2EE2
ver 4 0x8
custom_b 12 0xE00
var 2 0b10
custom_c 62 0b00, 0xEC932D5F69181C0

total 128

final: 2489E9AD-2EE2-8E00-8EC9-32D5F69181C0

 Example of a UUIDv8 Value (Name-Based)
 As per , name-based UUIDs that want to use
 modern hashing algorithms MUST be created within the
 UUIDv8 space. These MAY leverage newer hashing
 algorithms such as SHA-256 or SHA-512 (as defined by), SHA-3 or SHAKE (as defined by), or even algorithms that have not been defined
 yet.
 A SHA-256 version of the SHA-1 computation in is detailed in as
 an illustrative example detailing how this can be achieved. The
 creation of the name-based UUIDv8 value in this section follows the
 same logic defined in with the difference
 being SHA-256 in place of SHA-1.
 The field mapping and all values are illustrated in . Finally, to further illustrate the bit
 swapping for version and variant and the unused/discarded part of the
 SHA-256 value, see . An important note for
 secure hashing algorithms that produce outputs of an arbitrary size,
 such as those found in SHAKE, is that the output hash
 MUST be 128 bits or larger.

 UUIDv8 Example SHA256

Namespace (DNS): 6ba7b810-9dad-11d1-80b4-00c04fd430c8
Name: www.example.com
--
SHA-256:
5c146b143c524afd938a375d0df1fbf6fe12a66b645f72f6158759387e51f3c8

 UUIDv8 Example Name-Based SHA-256 Illustrative Example

field bits value

custom_a 48 0x5c146b143c52
ver 4 0x8
custom_b 12 0xafd
var 2 0b10
custom_c 62 0b00, 0x38a375d0df1fbf6

total 128

final: 5c146b14-3c52-8afd-938a-375d0df1fbf6

 UUIDv8 Example Ver/Var Bit Swaps and Discarded SHA-256 Segment
 	
A: 5c146b14-3c52-4afd-938a-375d0df1fbf6-fe12a66b645f72f6158759387e51f3c8
B: xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
C: 5c146b14-3c52-8afd-938a-375d0df1fbf6
D: -fe12a66b645f72f6158759387e51f3c8

 Examining :

 Line A details the full SHA-256 as a hexadecimal value with the
 dashes inserted.
 Line B details the version and variant hexadecimal positions,
 which must be overwritten.
 Line C details the final value after the ver and var have been
 overwritten.
 Line D details the discarded leftover values from the original
 SHA-256 computation.

 Acknowledgements
 The authors gratefully acknowledge the contributions of , , , , , ,
 , , , , , , ,
 , and .
 As well as all of those in the IETF community and on GitHub to who
 contributed to the discussions that resulted in this document.
 This document draws heavily on the OSF DCE specification (Appendix A
 of) for UUIDs. provided helpful comments.
 We are also grateful to the careful reading and bit-twiddling of
 , , and . was also invaluable in achieving
 coordination with ISO/IEC.

 Authors' Addresses

 Cisco Systems

 kydavis@cisco.com

 Uncloud

 brad@peabody.io

 University of Washington

 pjl7@uw.edu

